

 [image: cover image]

 [image: The Creative Commons Logo]

 This work is licensed under a Creative Commons
 Attribution-NonCommercial-ShareAlike 4.0 International License.

 ISBN 978-0-9997730-2-4

 Python Machine Learning Projects

 Written by Lisa Tagliaferri, Michelle Morales, Ellie Birbeck, and Alvin
 Wan, with editing by Brian Hogan and Mark Drake

 DigitalOcean, New York City, New York, USA

 Python Machine Learning Projects

 	Foreword

 	
 Setting Up a Python Programming Environment

 	
 An Introduction to Machine Learning

 	
 How To Build a Machine Learning Classifier in Python with
 Scikit-learn

 	
 How To Build a Neural Network to Recognize Handwritten Digits with
 TensorFlow

 	
 Bias-Variance for Deep Reinforcement Learning: How To Build a Bot
 for Atari with OpenAI Gym

 	
 Cover

 	
 Table of contents

 Foreword

 As machine learning is increasingly leveraged to find patterns, conduct
 analysis, and make decisions without final input from humans, it is of
 equal importance to not only provide resources to advance algorithms and
 methodologies, but to also invest in bringing more stakeholders into the
 fold. This book of Python projects in machine learning tries to do just
 that: to equip the developers of today and tomorrow with tools they can
 use to better understand, evaluate, and shape machine learning to help
 ensure that it is serving us all.

 This book will set you up with a Python programming environment if you
 don’t have one already, then provide you with a conceptual understanding
 of machine learning in the chapter “An Introduction to Machine
 Learning.” What follows next are three Python machine learning projects.
 They will help you create a machine learning classifier, build a neural
 network to recognize handwritten digits, and give you a background in
 deep reinforcement learning through building a bot for Atari.

 These chapters originally appeared as articles on DigitalOcean
 Community, written by members of the international software developer
 community. If you are interested in contributing to this knowledge base,
 consider proposing a tutorial to the Write for DOnations program at
 do.co/w4do. DigitalOcean offers payment
 to authors and provides a matching donation to tech-focused nonprofits.

 Other Books in this Series

 If you are learning Python or are looking for reference material, you
 can download our free Python eBook,
 How To Code in Python 3 which is available via
 do.co/python-book.

 For other programming languages and DevOps engineering articles, our
 knowledge base of over 2,100 tutorials is available as a
 Creative-Commons-licensed resource via
 do.co/tutorials.

 Setting Up a Python Programming Environment
 Written by Lisa Tagliaferri

 Python is a flexible and versatile programming language suitable for
 many use cases, with strengths in scripting, automation, data analysis,
 machine learning, and back-end development. First published in 1991 the
 Python development team was inspired by the British comedy group Monty
 Python to make a programming language that was fun to use. Python 3 is
 the most current version of the language and is considered to be the
 future of Python.

 This tutorial will help get your remote server or local computer set up
 with a Python 3 programming environment.
 If you already have Python 3 installed, along with pip and venv, feel
 free to move onto the next chapter!

 Prerequisites

 This tutorial will be based on working with a Linux or Unix-like
 (*nix) system and use of a command line or terminal environment. Both
 macOS and specifically the PowerShell program of Windows should be
 able to achieve similar results.

 Step 1 — Installing Python 3

 Many operating systems come with Python 3 already installed. You can
 check to see whether you have Python 3 installed by opening up a
 terminal window and typing the following:

 python3 -V

 You’ll receive output in the terminal window that will let you know
 the version number. While this number may vary, the output will be
 similar to this:

 Output

 Python 3.7.2

 If you received alternate output, you can navigate in a web browser to
 python.org in order to download
 Python 3 and install it to your machine by following the instructions.

 Once you are able to type the python3 -V command above
 and receive output that states your computer’s Python version number,
 you are ready to continue.

 Step 2 — Installing pip

 To manage software packages for Python, let’s install
 pip, a tool that will install and manage programming
 packages we may want to use in our development projects.

 If you have downloaded Python from python.org, you should have pip
 already installed. If you are on an Ubuntu or Debian server or
 computer, you can download pip by typing the following:

 sudo apt install -y python3-pip

 Now that you have pip installed, you can download Python packages with
 the following command:

 pip3 install package_name

 Here, package_name can
 refer to any Python package or library, such as Django for web
 development or NumPy for scientific computing. So if you would like to
 install NumPy, you can do so with the command
 pip3 install numpy.

 There are a few more packages and development tools to install to
 ensure that we have a robust set-up for our programming environment:

 sudo apt install build-essential libssl-dev libffi-dev python3-dev

 Once Python is set up, and pip and other tools are installed, we can
 set up a virtual environment for our development projects.

 Step 3 — Setting Up a Virtual Environment

 Virtual environments enable you to have an isolated space on your
 server for Python projects, ensuring that each of your projects can
 have its own set of dependencies that won’t disrupt any of your other
 projects.

 Setting up a programming environment provides us with greater control
 over our Python projects and over how different versions of packages
 are handled. This is especially important when working with
 third-party packages.

 You can set up as many Python programming environments as you want.
 Each environment is basically a directory or folder on your server
 that has a few scripts in it to make it act as an environment.

 While there are a few ways to achieve a programming environment in
 Python, we’ll be using the venv module here, which is
 part of the standard Python 3 library.

 If you have installed Python with through the installer available from
 python.org, you should have venv ready to go.

 To install venv into an Ubuntu or
 Debian server or machine, you can install it with the
 following:

 sudo apt install -y python3-venv

 With venv installed, we can now create environments. Let’s either
 choose which directory we would like to put our Python programming
 environments in, or create a new directory with mkdir, as
 in:

 mkdir environments
cd environments

 Once you are in the directory where you would like the environments to
 live, you can create an environment. You should use the version of
 Python that is installed on your machine as the first part of the
 command (the output you received when typing python -V).
 If that version was Python 3.6.3, you can type the
 following:

 python3.6 -m venv my_env

 If, instead, your computer has Python 3.7.3 installed,
 use the following command:

 python3.7 -m venv my_env

 Windows machines may allow you to remove the version number entirely:

 python -m venv my_env

 Once you run the appropriate command, you can verify that the
 environment is set up be continuing.

 Essentially, pyvenv sets up a new directory that contains
 a few items which we can view with the ls command:

 ls my_env

 Output

 bin include lib lib64 pyvenv.cfg share

 Together, these files work to make sure that your projects are
 isolated from the broader context of your local machine, so that
 system files and project files don’t mix. This is good practice for
 version control and to ensure that each of your projects has access to
 the particular packages that it needs. Python Wheels, a built-package
 format for Python that can speed up your software production by
 reducing the number of times you need to compile, will be in the
 Ubuntu 18.04 share directory.

 To use this environment, you need to activate it, which you can
 achieve by typing the following command that calls the
 activate script:

 source my_env/bin/activate

 Your command prompt will now be prefixed with the name of your
 environment, in this case it is called
 my_env. Depending on what version of
 Debian Linux you are running, your prefix may appear somewhat
 differently, but the name of your environment in parentheses should be
 the first thing you see on your line:

 (my_env) sammy@sammy:~/environments$

 This prefix lets us know that the environment
 my_env is currently active, meaning
 that when we create programs here they will use only this particular
 environment’s settings and packages.

 Note: Within the virtual environment, you can use
 the command python instead of python3, and
 pip instead of pip3 if you would prefer.
 If you use Python 3 on your machine outside of an environment, you
 will need to use the python3 and
 pip3 commands exclusively.

 After following these steps, your virtual environment is ready to use.

 Step 4 — Creating a “Hello, World” Program

 Now that we have our virtual environment set up, let’s create a
 traditional “Hello, World!” program. This will let us test our
 environment and provides us with the opportunity to become more
 familiar with Python if we aren’t already.

 To do this, we’ll open up a command-line text editor such as nano and
 create a new file:

 (my_env) sammy@sammy:~/environments$ nano hello.py

 Once the text file opens up in the terminal window we’ll type out our
 program:

 print("Hello, World!")

 Exit nano by typing the CTRL and X keys, and
 when prompted to save the file press y.

 Once you exit out of nano and return to your shell, let’s run the
 program:

 (my_env) sammy@sammy:~/environments$ python hello.py

 The hello.py program that you just created should cause
 your terminal to produce the following output:

 Output

 Hello, World!

 To leave the environment, simply type the command
 deactivate and you will return to your original
 directory.

 Conclusion

 At this point you have a Python 3 programming environment set up on
 your machine and you can now begin a coding project!

 If you would like to learn more about Python, you can download our
 free How To Code in Python 3 eBook via
 do.co/python-book.

 An Introduction to Machine Learning
 Written by Lisa Tagliaferri

 Machine learning is a subfield of artificial intelligence (AI). The goal
 of machine learning generally is to understand the structure of data and
 fit that data into models that can be understood and utilized by people.

 Although machine learning is a field within computer science, it differs
 from traditional computational approaches. In traditional computing,
 algorithms are sets of explicitly programmed instructions used by
 computers to calculate or problem solve. Machine learning algorithms
 instead allow for computers to train on data inputs and use statistical
 analysis in order to output values that fall within a specific range.
 Because of this, machine learning facilitates computers in building
 models from sample data in order to automate decision-making processes
 based on data inputs.

 Any technology user today has benefitted from machine learning. Facial
 recognition technology allows social media platforms to help users tag
 and share photos of friends. Optical character recognition (OCR)
 technology converts images of text into movable type. Recommendation
 engines, powered by machine learning, suggest what movies or television
 shows to watch next based on user preferences. Self-driving cars that
 rely on machine learning to navigate may soon be available to consumers.

 Machine learning is a continuously developing field. Because of this,
 there are some considerations to keep in mind as you work with machine
 learning methodologies, or analyze the impact of machine learning
 processes.

 In this tutorial, we’ll look into the common machine learning methods of
 supervised and unsupervised learning, and common algorithmic approaches
 in machine learning, including the k-nearest neighbor algorithm,
 decision tree learning, and deep learning. We’ll explore which
 programming languages are most used in machine learning, providing you
 with some of the positive and negative attributes of each. Additionally,
 we’ll discuss biases that are perpetuated by machine learning
 algorithms, and consider what can be kept in mind to prevent these
 biases when building algorithms.

 Machine Learning Methods

 In machine learning, tasks are generally classified into broad
 categories. These categories are based on how learning is received or
 how feedback on the learning is given to the system developed.

 Two of the most widely adopted machine learning methods are
 supervised learning which trains algorithms based on
 example input and output data that is labeled by humans, and
 unsupervised learning which provides the algorithm
 with no labeled data in order to allow it to find structure within its
 input data. Let’s explore these methods in more detail.

 Supervised Learning

 In supervised learning, the computer is provided with example inputs
 that are labeled with their desired outputs. The purpose of this
 method is for the algorithm to be able to “learn” by comparing its
 actual output with the “taught” outputs to find errors, and modify
 the model accordingly. Supervised learning therefore uses patterns
 to predict label values on additional unlabeled data.

 For example, with supervised learning, an algorithm may be fed data
 with images of sharks labeled as fish and images of
 oceans labeled as water. By being trained on this data,
 the supervised learning algorithm should be able to later identify
 unlabeled shark images as fish and unlabeled ocean
 images as water.

 A common use case of supervised learning is to use historical data
 to predict statistically likely future events. It may use historical
 stock market information to anticipate upcoming fluctuations, or be
 employed to filter out spam emails. In supervised learning, tagged
 photos of dogs can be used as input data to classify untagged photos
 of dogs.

 Unsupervised Learning

 In unsupervised learning, data is unlabeled, so the learning
 algorithm is left to find commonalities among its input data. As
 unlabeled data are more abundant than labeled data, machine learning
 methods that facilitate unsupervised learning are particularly
 valuable.

 The goal of unsupervised learning may be as straightforward as
 discovering hidden patterns within a dataset, but it may also have a
 goal of feature learning, which allows the computational machine to
 automatically discover the representations that are needed to
 classify raw data.

 Unsupervised learning is commonly used for transactional data. You
 may have a large dataset of customers and their purchases, but as a
 human you will likely not be able to make sense of what similar
 attributes can be drawn from customer profiles and their types of
 purchases. With this data fed into an unsupervised learning
 algorithm, it may be determined that women of a certain age range
 who buy unscented soaps are likely to be pregnant, and therefore a
 marketing campaign related to pregnancy and baby products can be
 targeted to this audience in order to increase their number of
 purchases.

 Without being told a “correct” answer, unsupervised learning methods
 can look at complex data that is more expansive and seemingly
 unrelated in order to organize it in potentially meaningful ways.
 Unsupervised learning is often used for anomaly detection including
 for fraudulent credit card purchases, and recommender systems that
 recommend what products to buy next. In unsupervised learning,
 untagged photos of dogs can be used as input data for the algorithm
 to find likenesses and classify dog photos together.

 Approaches

 As a field, machine learning is closely related to computational
 statistics, so having a background knowledge in statistics is useful
 for understanding and leveraging machine learning algorithms.

 For those who may not have studied statistics, it can be helpful to
 first define correlation and regression, as they are commonly used
 techniques for investigating the relationship among quantitative
 variables. Correlation is a measure of association
 between two variables that are not designated as either dependent or
 independent. Regression at a basic level is used to
 examine the relationship between one dependent and one independent
 variable. Because regression statistics can be used to anticipate the
 dependent variable when the independent variable is known, regression
 enables prediction capabilities.

 Approaches to machine learning are continuously being developed. For
 our purposes, we’ll go through a few of the popular approaches that
 are being used in machine learning at the time of writing.

 k-nearest neighbor

 The k-nearest neighbor algorithm is a pattern recognition model that
 can be used for classification as well as regression. Often
 abbreviated as k-NN, the k in k-nearest neighbor is
 a positive integer, which is typically small. In either
 classification or regression, the input will consist of the k
 closest training examples within a space.

 We will focus on k-NN classification. In this method, the output is
 class membership. This will assign a new object to the class most
 common among its k nearest neighbors. In the case of k = 1, the
 object is assigned to the class of the single nearest neighbor.

 Let’s look at an example of k-nearest neighbor. In the diagram
 below, there are blue diamond objects and orange star objects. These
 belong to two separate classes: the diamond class and the star
 class.

 [image: k-nearest neighbor initial data set]
 k-nearest neighbor initial data set

 When a new object is added to the space — in this case a green heart
 — we will want the machine learning algorithm to classify the heart
 to a certain class.

 [image: k-nearest neighbor data set with new object to classify]

 k-nearest neighbor data set with new object to classify

 When we choose k = 3, the algorithm will find the three nearest
 neighbors of the green heart in order to classify it to either the
 diamond class or the star class.

 In our diagram, the three nearest neighbors of the green heart are
 one diamond and two stars. Therefore, the algorithm will classify
 the heart with the star class.

 [image: k-nearest neighbor data set with classification complete]

 k-nearest neighbor data set with classification complete

 Among the most basic of machine learning algorithms, k-nearest
 neighbor is considered to be a type of “lazy learning” as
 generalization beyond the training data does not occur until a query
 is made to the system.

 Decision Tree Learning

 For general use, decision trees are employed to visually represent
 decisions and show or inform decision making. When working with
 machine learning and data mining, decision trees are used as a
 predictive model. These models map observations about data to
 conclusions about the data’s target value.

 The goal of decision tree learning is to create a model that will
 predict the value of a target based on input variables.

 In the predictive model, the data’s attributes that are determined
 through observation are represented by the branches, while the
 conclusions about the data’s target value are represented in the
 leaves.

 When “learning” a tree, the source data is divided into subsets
 based on an attribute value test, which is repeated on each of the
 derived subsets recursively. Once the subset at a node has the
 equivalent value as its target value has, the recursion process will
 be complete.

 Let’s look at an example of various conditions that can determine
 whether or not someone should go fishing. This includes weather
 conditions as well as barometric pressure conditions.

 [image: fishing decision tree example]
 fishing decision tree example

 In the simplified decision tree above, an example is classified by
 sorting it through the tree to the appropriate leaf node. This then
 returns the classification associated with the particular leaf,
 which in this case is either a Yes or a
 No. The tree classifies a day’s conditions based on
 whether or not it is suitable for going fishing.

 A true classification tree data set would have a lot more features
 than what is outlined above, but relationships should be
 straightforward to determine. When working with decision tree
 learning, several determinations need to be made, including what
 features to choose, what conditions to use for splitting, and
 understanding when the decision tree has reached a clear ending.

 Deep Learning

 Deep learning attempts to imitate how the human brain can process
 light and sound stimuli into vision and hearing. A deep learning
 architecture is inspired by biological neural networks and consists
 of multiple layers in an artificial neural network made up of
 hardware and GPUs.

 Deep learning uses a cascade of nonlinear processing unit layers in
 order to extract or transform features (or representations) of the
 data. The output of one layer serves as the input of the successive
 layer. In deep learning, algorithms can be either supervised and
 serve to classify data, or unsupervised and perform pattern
 analysis.

 Among the machine learning algorithms that are currently being used
 and developed, deep learning absorbs the most data and has been able
 to beat humans in some cognitive tasks. Because of these attributes,
 deep learning has become the approach with significant potential in
 the artificial intelligence space

 Computer vision and speech recognition have both realized
 significant advances from deep learning approaches. IBM Watson is a
 well-known example of a system that leverages deep learning.

 Human Biases

 Although data and computational analysis may make us think that we are
 receiving objective information, this is not the case; being based on
 data does not mean that machine learning outputs are neutral. Human
 bias plays a role in how data is collected, organized, and ultimately
 in the algorithms that determine how machine learning will interact
 with that data.

 If, for example, people are providing images for “fish” as data to
 train an algorithm, and these people overwhelmingly select images of
 goldfish, a computer may not classify a shark as a fish. This would
 create a bias against sharks as fish, and sharks would not be counted
 as fish.

 When using historical photographs of scientists as training data, a
 computer may not properly classify scientists who are also people of
 color or women. In fact, recent peer-reviewed research has indicated
 that AI and machine learning programs exhibit human-like biases that
 include race and gender prejudices. See, for example “Semantics derived automatically from language corpora contain
 human-like biases” and “Men Also Like Shopping: Reducing Gender Bias Amplification using
 Corpus-level Constraints” [PDF].

 As machine learning is increasingly leveraged in business, uncaught
 biases can perpetuate systemic issues that may prevent people from
 qualifying for loans, from being shown ads for high-paying job
 opportunities, or from receiving same-day delivery options.

 Because human bias can negatively impact others, it is extremely
 important to be aware of it, and to also work towards eliminating it
 as much as possible. One way to work towards achieving this is by
 ensuring that there are diverse people working on a project and that
 diverse people are testing and reviewing it. Others have called for
 regulatory third parties to monitor and audit algorithms,
 building alternative systems that can detect biases, and
 ethics reviews
 as part of data science project planning. Raising awareness about
 biases, being mindful of our own unconscious biases, and structuring
 equity in our machine learning projects and pipelines can work to
 combat bias in this field.

 Conclusion

 This tutorial reviewed some of the use cases of machine learning,
 common methods and popular approaches used in the field, suitable
 machine learning programming languages, and also covered some things
 to keep in mind in terms of unconscious biases being replicated in
 algorithms.

 Because machine learning is a field that is continuously being
 innovated, it is important to keep in mind that algorithms, methods,
 and approaches will continue to change.

 Currently, Python is one of the most popular programming languages to
 use with machine learning applications in professional fields. Other
 languages you may wish to investigate include Java, R, and C++.

 How To Build a Machine Learning Classifier in Python with Scikit-learn
 Written by Michelle Morales
 Edited by Brian Hogan

 In this tutorial, you’ll implement a simple machine learning algorithm
 in Python using
 Scikit-learn, a machine
 learning tool for Python. Using a database of breast cancer tumor
 information, you’ll use a
 Naive Bayes (NB)
 classifier that predicts whether or not a tumor is malignant or benign.

 By the end of this tutorial, you’ll know how to build your very own
 machine learning model in Python.

 Prerequisites

 To complete this tutorial, we’ll use Jupyter Notebooks, which are a
 useful and interactive way to run machine learning experiments. With
 Jupyter Notebooks, you can run short blocks of code and see the
 results quickly, making it easy to test and debug your code.

 To get up and running quickly, you can open up a web browser and
 navigate to the Try Jupyter website:
 jupyter.org/try. From there,
 click on
 Try Jupyter with Python, and you will be taken to an interactive Jupyter Notebook where you
 can start to write Python code.

 If you would like to learn more about Jupyter Notebooks and how to set
 up your own Python programming environment to use with Jupyter, you
 can read our tutorial on
 How To Set Up Jupyter Notebook for Python 3.

 Step 1 — Importing Scikit-learn

 Let’s begin by installing the Python module
 Scikit-learn, one of the
 best and most documented machine learning libraries for Python.

 To begin our coding project, let’s activate our Python 3 programming
 environment. Make sure you’re in the directory where your environment
 is located, and run the following command:

 . my_env/bin/activate

 With our programming environment activated, check to see if the
 Sckikit-learn module is already installed:

 (my_env) $ python -c "import sklearn"

 If sklearn is installed, this command will complete with
 no error. If it is not installed, you will see the following error
 message:

 Output

 Traceback (most recent call last): File "<string>", line 1, in <module> ImportError: No module named 'sklearn'

 The error message indicates that sklearn is not
 installed, so download the library using pip:

 (my_env) $ pip install scikit-learn[alldeps]

 Once the installation completes, launch Jupyter Notebook:

 (my_env) $ jupyter notebook

 In Jupyter, create a new Python Notebook called
 ML Tutorial. In the first cell of the Notebook,
 import
 the sklearn module:

 ML Tutorial

 import sklearn

 Your notebook should look like the following figure:

 [image: Jupyter Notebook with one Python cell, which imports sklearn]

 Jupyter Notebook with one Python cell, which imports sklearn

 Now that we have sklearn imported in our notebook, we can
 begin working with the dataset for our machine learning model.

 Step 2 — Importing Scikit-learn’s Dataset

 The dataset we will be working with in this tutorial is the
 Breast Cancer Wisconsin Diagnostic Database. The dataset includes various information about breast cancer
 tumors, as well as classification labels of
 malignant or benign. The dataset has
 569 instances, or data, on 569 tumors and includes
 information on 30 attributes, or features, such as the radius
 of the tumor, texture, smoothness, and area.

 Using this dataset, we will build a machine learning model to use
 tumor information to predict whether or not a tumor is malignant or
 benign.

 Scikit-learn comes installed with various datasets which we can load
 into Python, and the dataset we want is included. Import and load the
 dataset:

 ML Tutorial

 ...
from sklearn.datasets import load_breast_cancer

Load dataset

data = load_breast_cancer()

 The data
 variable
 represents a Python object that works like a
 dictionary. The important dictionary keys to consider are the classification
 label names (target_names), the actual labels
 (target), the attribute/feature names
 (feature_names), and the attributes (data).

 Attributes are a critical part of any classifier. Attributes capture
 important characteristics about the nature of the data. Given the
 label we are trying to predict (malignant versus benign tumor),
 possible useful attributes include the size, radius, and texture of
 the tumor.

 Create new variables for each important set of information and assign
 the data:

 ML Tutorial

 ...
Organize our data
label_names = data['target_names']
labels = data['target']
feature_names = data['feature_names']
features = data['data']

 We now have
 lists
 for each set of information. To get a better understanding of our
 dataset, let’s take a look at our data by printing our class labels,
 the first data instance’s label, our feature names, and the feature
 values for the first data instance:

 ML Tutorial

 ...
Look at our data
print(label_names)
print(labels[0])
print(feature_names[0])
print(features[0])

 You’ll see the following results if you run the code:

 [image: Alt Jupyter Notebook with three Python cells, which prints the first instance in our dataset]

 Alt Jupyter Notebook with three Python cells, which prints the first
 instance in our dataset

 As the image shows, our class names are malignant and
 benign, which are then mapped to binary values of
 0 and 1, where 0 represents
 malignant tumors and 1 represents benign tumors.
 Therefore, our first data instance is a malignant tumor whose
 mean radius is 1.79900000e+01.

 Now that we have our data loaded, we can work with our data to build
 our machine learning classifier.

 Step 3 — Organizing Data into Sets

 To evaluate how well a classifier is performing, you should always
 test the model on unseen data. Therefore, before building a model,
 split your data into two parts: a training set and a
 test set.

 You use the training set to train and evaluate the model during the
 development stage. You then use the trained model to make predictions
 on the unseen test set. This approach gives you a sense of the model’s
 performance and robustness.

 Fortunately, sklearn has a function called
 train_test_split(), which divides your data into these
 sets. Import the function and then use it to split the data:

 ML Tutorial

 ...
from sklearn.model_selection import train_test_split

Split our data

train, test, train_labels, test_labels = train_test_split(features,
labels,
test_size=0.33,
random_state=42)

 The function randomly splits the data using the
 test_size parameter. In this example, we now have a test
 set (test) that represents 33% of the original dataset.
 The remaining data (train) then makes up the training
 data. We also have the respective labels for both the train/test
 variables, i.e. train_labels and
 test_labels.

 We can now move on to training our first model.

 Step 4 — Building and Evaluating the Model

 There are many models for machine learning, and each model has its own
 strengths and weaknesses. In this tutorial, we will focus on a simple
 algorithm that usually performs well in binary classification tasks,
 namely
 Naive Bayes (NB).

 First, import the GaussianNB module. Then initialize the
 model with the GaussianNB() function, then train the
 model by fitting it to the data using gnb.fit():

 ML Tutorial

 ...
from sklearn.naive_bayes import GaussianNB

Initialize our classifier
gnb = GaussianNB()

Train our classifier
model = gnb.fit(train, train_labels)

 After we train the model, we can then use the trained model to make
 predictions on our test set, which we do using the
 predict() function. The predict() function
 returns an array of predictions for each data instance in the test
 set. We can then print our predictions to get a sense of what the
 model determined.

 Use the predict() function with the test set
 and print the results:

 ML Tutorial

 ...
Make predictions
preds = gnb.predict(test)
print(preds)

 Run the code and you’ll see the following results:

 [image: Jupyter Notebook with Python cell that prints the predicted values of the Naive Bayes classifier on our test data]

 Jupyter Notebook with Python cell that prints the predicted values
 of the Naive Bayes classifier on our test data

 As you see in the Jupyter Notebook output, the
 predict() function returned an array of 0s
 and 1s which represent our predicted values for the tumor
 class (malignant vs. benign).

 Now that we have our predictions, let’s evaluate how well our
 classifier is performing.

 Step 5 — Evaluating the Model’s Accuracy

 Using the array of true class labels, we can evaluate the accuracy of
 our model’s predicted values by comparing the two arrays (test_labels
 vs. preds). We will use the sklearn function
 accuracy_score() to determine the accuracy of our machine
 learning classifier.

 ML Tutorial

 ...
from sklearn.metrics import accuracy_score

Evaluate accuracy

print(accuracy_score(test_labels, preds))

 You’ll see the following results:

 [image: Alt Jupyter Notebook with Python cell that prints the accuracy of our NB classifier]

 Alt Jupyter Notebook with Python cell that prints the accuracy of
 our NB classifier

 As you see in the output, the NB classifier is 94.15% accurate. This
 means that 94.15 percent of the time the classifier is able to make
 the correct prediction as to whether or not the tumor is malignant or
 benign. These results suggest that our feature set of 30 attributes
 are good indicators of tumor class.

 You have successfully built your first machine learning classifier.
 Let’s reorganize the code by placing all
 import statements at the top of the Notebook or script.
 The final version of the code should look like this:

 ML Tutorial

 from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score

Load dataset
data = load_breast_cancer()

Organize our data
label_names = data['target_names']
labels = data['target']
feature_names = data['feature_names']
features = data['data']

Look at our data
print(label_names)
print('Class label = ', labels[0])
print(feature_names)
print(features[0])

Split our data
train, test, train_labels, test_labels = train_test_split(features,
 labels,
 test_size=0.33,
 random_state=42)

Initialize our classifier
gnb = GaussianNB()

Train our classifier
model = gnb.fit(train, train_labels)

Make predictions
preds = gnb.predict(test)
print(preds)

Evaluate accuracy
print(accuracy_score(test_labels, preds))

 Now you can continue to work with your code to see if you can make
 your classifier perform even better. You could experiment with
 different subsets of features or even try completely different
 algorithms. Check out Scikit-learn’s website at
 scikit-learn.org/stable
 for more machine learning ideas.

 Conclusion

 In this tutorial, you learned how to build a machine learning
 classifier in Python. Now you can load data, organize data, train,
 predict, and evaluate machine learning classifiers in Python using
 Scikit-learn. The steps in this tutorial should help you facilitate
 the process of working with your own data in Python.

 How To Build a Neural Network to Recognize Handwritten Digits with
 TensorFlow
 Written by Ellie Birbeck
 Edited by Brian Hogan

 Neural networks are used as a method of deep learning, one of the many
 subfields of artificial intelligence. They were first proposed around 70
 years ago as an attempt at simulating the way the human brain works,
 though in a much more simplified form. Individual ‘neurons’ are
 connected in layers, with weights assigned to determine how the neuron
 responds when signals are propagated through the network. Previously,
 neural networks were limited in the number of neurons they were able to
 simulate, and therefore the complexity of learning they could achieve.
 But in recent years, due to advancements in hardware development, we
 have been able to build very deep networks, and train them on enormous
 datasets to achieve breakthroughs in machine intelligence.

 These breakthroughs have allowed machines to match and exceed the
 capabilities of humans at performing certain tasks. One such task is
 object recognition. Though machines have historically been unable to
 match human vision, recent advances in deep learning have made it
 possible to build neural networks which can recognize objects, faces,
 text, and even emotions.

 In this tutorial, you will implement a small subsection of object
 recognition—digit recognition. Using TensorFlow
 (https://www.tensorflow.org/), an open-source Python library developed
 by the Google Brain labs for deep learning research, you will take
 hand-drawn images of the numbers 0-9 and build and train a neural
 network to recognize and predict the correct label for the digit
 displayed.

 While you won’t need prior experience in practical deep learning or
 TensorFlow to follow along with this tutorial, we’ll assume some
 familiarity with machine learning terms and concepts such as training
 and testing, features and labels, optimization, and evaluation.

 Prerequisites

 To complete this tutorial, you’ll need a local or remote Python 3
 development environment that includes pip for installing Python
 packages, and venv for creating virtual environments.

 Step 1 — Configuring the Project

 Before you can develop the recognition program, you’ll need to install
 a few dependencies and create a workspace to hold your files.

 We’ll use a Python 3 virtual environment to manage our project’s
 dependencies. Create a new directory for your project and navigate to
 the new directory:

 mkdir tensorflow-demo
cd tensorflow-demo

 Execute the following commands to set up the virtual environment for
 this tutorial:

 python3 -m venv tensorflow-demo
source tensorflow-demo/bin/activate

 Next, install the libraries you’ll use in this tutorial. We’ll use
 specific versions of these libraries by creating a
 requirements.txt file in the project directory which
 specifies the requirement and the version we need. Create the
 requirements.txt file:

 (tensorflow-demo) $ touch requirements.txt

 Open the file in your text editor and add the following lines to
 specify the Image, NumPy, and TensorFlow libraries and their versions:

 requirements.txt

 image==1.5.20
numpy==1.14.3
tensorflow==1.4.0

 Save the file and exit the editor. Then install these libraries with
 the following command:

 (tensorflow-demo) $ pip install -r requirements.txt

 With the dependencies installed, we can start working on our project.

 Step 2 — Importing the MNIST Dataset

 The dataset we will be using in this tutorial is called the
 MNIST dataset, and it
 is a classic in the machine learning community. This dataset is made
 up of images of handwritten digits, 28x28 pixels in size. Here are
 some examples of the digits included in the dataset:

 [image: Examples of MNIST images]
 Examples of MNIST images

 Let’s create a Python program to work with this dataset. We will use
 one file for all of our work in this tutorial. Create a new file
 called main.py:

 (tensorflow-demo) $ touch main.py

 Now open this file in your text editor of choice and add this line of
 code to the file to import the TensorFlow library:

 main.py

 import tensorflow as tf

 Add the following lines of code to your file to import the MNIST
 dataset and store the image data in the variable mnist:

 main.py

 ...
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # y labels are oh-encoded

 When reading in the data, we are using one-hot-encoding to
 represent the labels (the actual digit drawn, e.g. “3”) of the images.
 One-hot-encoding uses a vector of binary values to represent numeric
 or categorical values. As our labels are for the digits 0-9, the
 vector contains ten values, one for each possible digit. One of these
 values is set to 1, to represent the digit at that index of the
 vector, and the rest are set to 0. For example, the digit 3 is
 represented using the vector
 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]. As the value at index 3
 is stored as 1, the vector therefore represents the digit 3.

 To represent the actual images themselves, the 28x28 pixels are
 flattened into a 1D vector which is 784 pixels in size. Each of the
 784 pixels making up the image is stored as a value between 0 and 255.
 This determines the grayscale of the pixel, as our images are
 presented in black and white only. So a black pixel is represented by
 255, and a white pixel by 0, with the various shades of gray somewhere
 in between.

 We can use the mnist variable to find out the size of the
 dataset we have just imported. Looking at the
 num_examples for each of the three subsets, we can
 determine that the dataset has been split into 55,000 images for
 training, 5000 for validation, and 10,000 for testing. Add the
 following lines to your file:

 main.py

 ...
n_train = mnist.train.num_examples # 55,000
n_validation = mnist.validation.num_examples # 5000
n_test = mnist.test.num_examples # 10,000

 Now that we have our data imported, it’s time to think about the
 neural network.

 Step 3 — Defining the Neural Network Architecture

 The architecture of the neural network refers to elements such as the
 number of layers in the network, the number of units in each layer,
 and how the units are connected between layers. As neural networks are
 loosely inspired by the workings of the human brain, here the term
 unit is used to represent what we would biologically think of as a
 neuron. Like neurons passing signals around the brain, units take some
 values from previous units as input, perform a computation, and then
 pass on the new value as output to other units. These units are
 layered to form the network, starting at a minimum with one layer for
 inputting values, and one layer to output values. The term
 hidden layer is used for all of the layers in between the
 input and output layers, i.e. those “hidden” from the real world.

 Different architectures can yield dramatically different results, as
 the performance can be thought of as a function of the architecture
 among other things, such as the parameters, the data, and the duration
 of training.

 Add the following lines of code to your file to store the number of
 units per layer in global variables. This allows us to alter the
 network architecture in one place, and at the end of the tutorial you
 can test for yourself how different numbers of layers and units will
 impact the results of our model:

 main.py

 ...
n_input = 784 # input layer (28x28 pixels)
n_hidden1 = 512 # 1st hidden layer
n_hidden2 = 256 # 2nd hidden layer
n_hidden3 = 128 # 3rd hidden layer
n_output = 10 # output layer (0-9 digits)

 The following diagram shows a visualization of the architecture we’ve
 designed, with each layer fully connected to the surrounding layers:

 [image: Diagram of a neural network]
 Diagram of a neural network

 The term “deep neural network” relates to the number of hidden layers,
 with “shallow” usually meaning just one hidden layer, and “deep”
 referring to multiple hidden layers. Given enough training data, a
 shallow neural network with a sufficient number of units should
 theoretically be able to represent any function that a deep neural
 network can. But it is often more computationally efficient to use a
 smaller deep neural network to achieve the same task that would
 require a shallow network with exponentially more hidden units.
 Shallow neural networks also often encounter overfitting, where the
 network essentially memorizes the training data that it has seen, and
 is not able to generalize the knowledge to new data. This is why deep
 neural networks are more commonly used: the multiple layers between
 the raw input data and the output label allow the network to learn
 features at various levels of abstraction, making the network itself
 better able to generalize.

 Other elements of the neural network that need to be defined here are
 the hyperparameters. Unlike the parameters that will get updated
 during training, these values are set initially and remain constant
 throughout the process. In your file, set the following variables and
 values:

 main.py

 ...
learning_rate = 1e-4
n_iterations = 1000
batch_size = 128
dropout = 0.5

 The learning rate represents how much the parameters will adjust at
 each step of the learning process. These adjustments are a key
 component of training: after each pass through the network we tune the
 weights slightly to try and reduce the loss. Larger learning rates can
 converge faster, but also have the potential to overshoot the optimal
 values as they are updated. The number of iterations refers to how
 many times we go through the training step, and the batch size refers
 to how many training examples we are using at each step. The
 dropout variable represents a threshold at which we
 eliminate some units at random. We will be using
 dropout in our final hidden layer to give each unit a 50%
 chance of being eliminated at every training step. This helps prevent
 overfitting.

 We have now defined the architecture of our neural network, and the
 hyperparameters that impact the learning process. The next step is to
 build the network as a TensorFlow graph.

 Step 4 — Building the TensorFlow Graph

 To build our network, we will set up the network as a computational
 graph for TensorFlow to execute. The core concept of TensorFlow is the
 tensor, a data structure similar to an array or list.
 initialized, manipulated as they are passed through the graph, and
 updated through the learning process.

 We’ll start by defining three tensors as placeholders, which
 are tensors that we’ll feed values into later. Add the following to
 your file:

 main.py

 ...
X = tf.placeholder("float", [None, n_input])
Y = tf.placeholder("float", [None, n_output])
keep_prob = tf.placeholder(tf.float32)

 The only parameter that needs to be specified at its declaration is
 the size of the data we will be feeding in. For X we use
 a shape of [None, 784], where
 None represents any amount, as we will be feeding in an
 undefined number of 784-pixel images. The shape of Y is
 [None, 10] as we will be using it for an undefined number
 of label outputs, with 10 possible classes. The
 keep_prob tensor is used to control the dropout rate, and
 we initialize it as a placeholder rather than an immutable variable
 because we want to use the same tensor both for training (when
 dropout is set to 0.5) and testing (when
 dropout is set to 1.0).

 The parameters that the network will update in the training process
 are the weight and bias values, so for these
 we need to set an initial value rather than an empty placeholder.
 These values are essentially where the network does its learning, as
 they are used in the activation functions of the neurons, representing
 the strength of the connections between units.

 Since the values are optimized during training, we could set them to
 zero for now. But the initial value actually has a significant impact
 on the final accuracy of the model. We’ll use random values from a
 truncated normal distribution for the weights. We want them to be
 close to zero, so they can adjust in either a positive or negative
 direction, and slightly different, so they generate different errors.
 This will ensure that the model learns something useful. Add these
 lines:

 main.py

 ...
weights = {
 'w1': tf.Variable(tf.truncated_normal([n_input, n_hidden1], stddev=0.1)),
 'w2': tf.Variable(tf.truncated_normal([n_hidden1, n_hidden2], stddev=0.1)),
 'w3': tf.Variable(tf.truncated_normal([n_hidden2, n_hidden3], stddev=0.1)),
 'out': tf.Variable(tf.truncated_normal([n_hidden3, n_output], stddev=0.1)),
}

 For the bias, we use a small constant value to ensure that the tensors
 activate in the intial stages and therefore contribute to the
 propagation. The weights and bias tensors are stored in dictionary
 objects for ease of access. Add this code to your file to define the
 biases:

 main.py

 ...
biases = {
 'b1': tf.Variable(tf.constant(0.1, shape=[n_hidden1])),
 'b2': tf.Variable(tf.constant(0.1, shape=[n_hidden2])),
 'b3': tf.Variable(tf.constant(0.1, shape=[n_hidden3])),
 'out': tf.Variable(tf.constant(0.1, shape=[n_output]))
}

 Next, set up the layers of the network by defining the operations that
 will manipulate the tensors. Add these lines to your file:

 main.py

 ...
layer_1 = tf.add(tf.matmul(X, weights['w1']), biases['b1'])
layer_2 = tf.add(tf.matmul(layer_1, weights['w2']), biases['b2'])
layer_3 = tf.add(tf.matmul(layer_2, weights['w3']), biases['b3'])
layer_drop = tf.nn.dropout(layer_3, keep_prob)
output_layer = tf.matmul(layer_3, weights['out']) + biases['out']

 Each hidden layer will execute matrix multiplication on the previous
 layer’s outputs and the current layer’s weights, and add the bias to
 these values. At the last hidden layer, we will apply a dropout
 operation using our keep_prob value of 0.5.

 The final step in building the graph is to define the loss function
 that we want to optimize. A popular choice of loss function in
 TensorFlow programs is cross-entropy, also known as
 log-loss, which quantifies the difference between two
 probability distributions (the predictions and the labels). A perfect
 classification would result in a cross-entropy of 0, with the loss
 completely minimized.

 We also need to choose the optimization algorithm which will be used
 to minimize the loss function. A process named
 gradient descent optimization is a common method for finding
 the (local) minimum of a function by taking iterative steps along the
 gradient in a negative (descending) direction. There are several
 choices of gradient descent optimization algorithms already
 implemented in TensorFlow, and in this tutorial we will be using the
 Adam optimizer. This extends upon gradient descent optimization by using momentum
 to speed up the process through computing an exponentially weighted
 average of the gradients and using that in the adjustments. Add the
 following code to your file:

 main.py

 ...
cross_entropy = tf.reduce_mean(
 tf.nn.softmax_cross_entropy_with_logits(
 labels=Y, logits=output_layer
))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

 We’ve now defined the network and built it out with TensorFlow. The
 next step is to feed data through the graph to train it, and then test
 that it has actually learnt something.

 Step 5 — Training and Testing

 The training process involves feeding the training dataset through the
 graph and optimizing the loss function. Every time the network
 iterates through a batch of more training images, it updates the
 parameters to reduce the loss in order to more accurately predict the
 digits shown. The testing process involves running our testing dataset
 through the trained graph, and keeping track of the number of images
 that are correctly predicted, so that we can calculate the accuracy.

 Before starting the training process, we will define our method of
 evaluating the accuracy so we can print it out on mini-batches of data
 while we train. These printed statements will allow us to check that
 from the first iteration to the last, loss decreases and accuracy
 increases; they will also allow us to track whether or not we have ran
 enough iterations to reach a consistent and optimal result:

 main.py

 ...
correct_pred = tf.equal(tf.argmax(output_layer, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

 In correct_pred, we use the arg_max function
 to compare which images are being predicted correctly by looking at
 the output_layer (predictions) and
 Y (labels), and we use the equal function to
 return this as a list of
 Booleans. We can then cast this list to floats and calculate the mean to get
 a total accuracy score.

 We are now ready to initialize a session for running the graph. In
 this session we will feed the network with our training examples, and
 once trained, we feed the same graph with new test examples to
 determine the accuracy of the model. Add the following lines of code
 to your file:

 main.py

 ...
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

 The essence of the training process in deep learning is to optimize
 the loss function. Here we are aiming to minimize the difference
 between the predicted labels of the images, and the true labels of the
 images. The process involves four steps which are repeated for a set
 number of iterations:

 	Propagate values forward through the network

 	Compute the loss

 	Propagate values backward through the network

 	Update the parameters

 At each training step, the parameters are adjusted slightly to try and
 reduce the loss for the next step. As the learning progresses, we
 should see a reduction in loss, and eventually we can stop training
 and use the network as a model for testing our new data.

 Add this code to the file:

 main.py

 ...
train on mini batches
for i in range(n_iterations):
 batch_x, batch_y = mnist.train.next_batch(batch_size)
 sess.run(train_step, feed_dict={
 X: batch_x, Y: batch_y, keep_prob: dropout
 })

 # print loss and accuracy (per minibatch)
 if i % 100 == 0:
 minibatch_loss, minibatch_accuracy = sess.run(
 [cross_entropy, accuracy],
 feed_dict={X: batch_x, Y: batch_y, keep_prob: 1.0}
)
 print(
 "Iteration",
 str(i),
 "\t| Loss =",
 str(minibatch_loss),
 "\t| Accuracy =",
 str(minibatch_accuracy)
)

 After 100 iterations of each training step in which we feed a
 mini-batch of images through the network, we print out the loss and
 accuracy of that batch. Note that we should not be expecting a
 decreasing loss and increasing accuracy here, as the values are per
 batch, not for the entire model. We use mini-batches of images rather
 than feeding them through individually to speed up the training
 process and allow the network to see a number of different examples
 before updating the parameters.

 Once the training is complete, we can run the session on the test
 images. This time we are using a keep_prob dropout rate
 of 1.0 to ensure all units are active in the testing
 process.

 Add this code to the file:

 main.py

 ...
test_accuracy = sess.run(accuracy, feed_dict={X: mnist.test.images, Y: mnist.test.labels, keep_prob: 1.0})
print("\nAccuracy on test set:", test_accuracy)

 It’s now time to run our program and see how accurately our neural
 network can recognize these handwritten digits. Save the
 main.py file and execute the following command in the
 terminal to run the script:

 (tensorflow-demo) $ python main.py

 You’ll see an output similar to the following, although individual
 loss and accuracy results may vary slightly:

 Output

 Iteration 0 | Loss = 3.67079 | Accuracy = 0.140625
Iteration 100 | Loss = 0.492122 | Accuracy = 0.84375
Iteration 200 | Loss = 0.421595 | Accuracy = 0.882812
Iteration 300 | Loss = 0.307726 | Accuracy = 0.921875
Iteration 400 | Loss = 0.392948 | Accuracy = 0.882812
Iteration 500 | Loss = 0.371461 | Accuracy = 0.90625
Iteration 600 | Loss = 0.378425 | Accuracy = 0.882812
Iteration 700 | Loss = 0.338605 | Accuracy = 0.914062
Iteration 800 | Loss = 0.379697 | Accuracy = 0.875
Iteration 900 | Loss = 0.444303 | Accuracy = 0.90625

Accuracy on test set: 0.9206

 To try and improve the accuracy of our model, or to learn more about
 the impact of tuning hyperparameters, we can test the effect of
 changing the learning rate, the dropout threshold, the batch size, and
 the number of iterations. We can also change the number of units in
 our hidden layers, and change the amount of hidden layers themselves,
 to see how different architectures increase or decrease the model
 accuracy.

 To demonstrate that the network is actually recognizing the hand-drawn
 images, let’s test it on a single image of our own.

 If you are on a local machine and you would like to use your own
 hand-drawn number, you can use a graphics editor to create your own
 28x28 pixel image of a digit. Otherwise, you can use
 curl to download the following sample test image to your
 server or computer:

 (tensorflow-demo) $ curl -O images/test_img.png

 Open the main.py file in your editor and add the
 following lines of code to the top of the file to import two libraries
 necessary for image manipulation.

 main.py

 import numpy as np
from PIL import Image
...

 Then at the end of the file, add the following line of code to load
 the test image of the handwritten digit:

 main.py

 ...
img = np.invert(Image.open("test_img.png").convert('L')).ravel()

 The open function of the Image library loads
 the test image as a 4D array containing the three RGB color channels
 and the Alpha transparency. This is not the same representation we
 used previously when reading in the dataset with TensorFlow, so we’ll
 need to do some extra work to match the format.

 First, we use the convert function with the
 L parameter to reduce the 4D RGBA representation to one
 grayscale color channel. We store this as a numpy array
 and invert it using np.invert, because the current matrix
 represents black as 0 and white as 255, whereas we need the opposite.
 Finally, we call ravel to flatten the array.

 Now that the image data is structured correctly, we can run a session
 in the same way as previously, but this time only feeding in the
 single image for testing.

 Add the following code to your file to test the image and print the
 outputted label.

 main.py

 ...
prediction = sess.run(tf.argmax(output_layer, 1), feed_dict={X: [img]})
print ("Prediction for test image:", np.squeeze(prediction))

 The np.squeeze function is called on the prediction to
 return the single integer from the array (i.e. to go from [2] to 2).
 The resulting output demonstrates that the network has recognized this
 image as the digit 2.

 Output

 Prediction for test image: 2

 You can try testing the network with more complex images –– digits
 that look like other digits, for example, or digits that have been
 drawn poorly or incorrectly –– to see how well it fares.

 Conclusion

 In this tutorial you successfully trained a neural network to classify
 the MNIST dataset with around 92% accuracy and tested it on an image
 of your own. Current state-of-the-art research achieves around 99% on
 this same problem, using more complex network architectures involving
 convolutional layers. These use the 2D structure of the image to
 better represent the contents, unlike our method which flattened all
 the pixels into one vector of 784 units. You can read more about this
 topic on the
 TensorFlow website, and see the research papers detailing the most accurate results on
 the MNIST website.

 Now that you know how to build and train a neural network, you can try
 and use this implementation on your own data, or test it on other
 popular datasets such as the
 Google StreetView House Numbers, or the
 CIFAR-10
 dataset for more general image recognition.

 Bias-Variance for Deep Reinforcement Learning: How To Build a Bot for
 Atari with OpenAI Gym
 Written by Alvin Wan
 Edited by Mark Drake

 Reinforcement learning is a subfield within control theory, which
 concerns controlling systems that change over time and broadly includes
 applications such as self-driving cars, robotics, and bots for games.
 Throughout this guide, you will use reinforcement learning to build a
 bot for Atari video games. This bot is not given access to internal
 information about the game. Instead, it’s only given access to the
 game’s rendered display and the reward for that display, meaning that it
 can only see what a human player would see.

 In machine learning, a bot is formally known as an agent. In
 the case of this tutorial, an agent is a “player” in the system that
 acts according to a decision-making function, called a policy.
 The primary goal is to develop strong agents by arming them with strong
 policies. In other words, our aim is to develop intelligent bots by
 arming them with strong decision-making capabilities.

 You will begin this tutorial by training a basic reinforcement learning
 agent that takes random actions when playing Space Invaders, the classic
 Atari arcade game, which will serve as your baseline for comparison.
 Following this, you will explore several other techniques — including
 Q-learning, deep Q-learning, and least squares — while building agents
 that play Space Invaders and Frozen Lake, a simple game environment
 included in Gym (https://gym.openai.com/), a reinforcement learning
 toolkit released by OpenAI (https://openai.com/). By following this
 tutorial, you will gain an understanding of the fundamental concepts
 that govern one’s choice of model complexity in machine learning.

 Prerequisites

 To complete this tutorial, you will need:

 	
 A server running Ubuntu 18.04, with at least 1GB of RAM. This server
 should have a non-root user with sudo privileges
 configured, as well as a firewall set up with UFW. You can set this
 up by following this
 Initial Server Setup Guide for Ubuntu 18.04.

 	
 A Python 3 virtual environment which you can achieve by reading our
 guide “How To Install Python 3 and Set Up a Programming Environment on
 an Ubuntu 18.04 Server.”

 Alternatively, if you are using a local machine, you can install
 Python 3 and set up a local programming environment by reading the
 appropriate tutorial for your operating system via our
 Python Installation and Setup Series.

 Step 1 — Creating the Project and Installing Dependencies

 In order to set up the development environment for your bots, you must
 download the game itself and the libraries needed for computation.

 Begin by creating a workspace for this project named
 AtariBot:

 mkdir ~/AtariBot

 Navigate to the new AtariBot directory:

 cd ~/AtariBot

 Then create a new virtual environment for the project. You can name
 this virtual environment anything you’d like; here, we will name it
 ataribot:

 python3 -m venv ataribot

 Activate your environment:

 source ataribot/bin/activate

 On Ubuntu, as of version 16.04, OpenCV requires a few more packages to
 be installed in order to function. These include CMake — an
 application that manages software build processes — as well as a
 session manager, miscellaneous extensions, and digital image
 composition. Run the following command to install these packages:

 sudo apt-get install -y cmake libsm6 libxext6 libxrender-dev libz-dev

 NOTE: If you’re following this guide on a local
 machine running MacOS, the only additional software you need to
 install is CMake. Install it using Homebrew (which you will have
 installed if you followed the
 prerequisite MacOS tutorial) by typing:

 brew install cmake

 Next, use pip to install the wheel package,
 the reference implementation of the wheel packaging standard. A Python
 library, this package serves as an extension for building wheels and
 includes a command line tool for working with .whl files:

 python -m pip install wheel

 In addition to wheel, you’ll need to install the
 following packages:

 	
 Gym, a Python library that makes various games available for research,
 as well as all dependencies for the Atari games. Developed by
 OpenAI, Gym offers public
 benchmarks for each of the games so that the performance for various
 agents and algorithms can be uniformly /evaluated.

 	
 Tensorflow, a deep learning library. This library gives us the ability to run
 computations more efficiently. Specifically, it does this by
 building mathematical functions using Tensorflow’s abstractions that
 run exclusively on your GPU.

 	
 OpenCV, the computer vision library mentioned previously.

 	
 SciPy, a scientific computing library that offers efficient optimization
 algorithms.

 	
 NumPy, a linear algebra library.

 Install each of these packages with the following command. Note that
 this command specifies which version of each package to install:

 python -m pip install gym==0.9.5 tensorflow==1.5.0 tensorpack==0.8.0 numpy==1.14.0 scipy==1.1.0 opencv-python==3.4.1.15

 Following this, use pip once more to install Gym’s Atari
 environments, which includes a variety of Atari video games, including
 Space Invaders:

 python -m pip install gym[atari]

 If your installation of the gym[atari] package was
 successful, your output will end with the following:

 Output

 Installing collected packages: atari-py, Pillow, PyOpenGL
Successfully installed Pillow-5.4.1 PyOpenGL-3.1.0 atari-py-0.1.7

 With these dependencies installed, you’re ready to move on and build
 an agent that plays randomly to serve as your baseline for comparison.

 Step 2 — Creating a Baseline Random Agent with Gym

 Now that the required software is on your server, you will set up an
 agent that will play a simplified version of the classic Atari game,
 Space Invaders. For any experiment, it is necessary to obtain a
 baseline to help you understand how well your model performs. Because
 this agent takes random actions at each frame, we’ll refer to it as
 our random, baseline agent. In this case, you will compare against
 this baseline agent to understand how well your agents perform in
 later steps.

 With Gym, you maintain your own game loop. This means that
 you handle every step of the game’s execution: at every time step, you
 give the gym a new action and ask gym for
 the game state. In this tutorial, the game state is the
 game’s appearance at a given time step, and is precisely what you
 would see if you were playing the game.

 Using your preferred text editor, create a Python file named
 bot_2_random.py. Here, we’ll use nano:

 nano bot_2_random.py

 Note: Throughout this guide, the bots’ names are
 aligned with the Step number in which they appear, rather than the
 order in which they appear. Hence, this bot is named
 bot_2_random.py rather than
 bot_1_random.py.

 Start this script by adding the following highlighted lines. These
 lines include a comment block that explains what this script will do
 and two import statements that will import the packages
 this script will ultimately need in order to function:

 /AtariBot/bot_2_random.py

 """
Bot 2 -- Make a random, baseline agent for the SpaceInvaders game.
"""

import gym
import random

 Add a main function. In this function, create the game
 environment — SpaceInvaders-v0 — and then initialize the
 game using env.reset:

 /AtariBot/bot_2_random.py

 . . .
import gym
import random

def main():
env = gym.make('SpaceInvaders-v0')
env.reset()

 Next, add an env.step function. This function can return
 the following kinds of values:

 	
 state: The new state of the game, after applying the
 provided action.

 	
 reward: The increase in score that the state incurs. By
 way of example, this could be when a bullet has destroyed an alien,
 and the score increases by 50 points. Then,
 reward = 50. In playing any score-based game, the
 player’s goal is to maximize the score. This is synonymous with
 maximizing the total reward.

 	
 done: Whether or not the episode has ended, which
 usually occurs when a player has lost all lives.

 	
 info: Extraneous information that you’ll put aside for
 now.

 You will use reward to count your total reward. You’ll
 also use done to determine when the player dies, which
 will be when done returns True.

 Add the following game loop, which instructs the game to loop until
 the player dies:

 /AtariBot/bot_2_random.py

 . . .
def main():
env = gym.make('SpaceInvaders-v0')
env.reset()

 episode_reward = 0
 while True:
 action = env.action_space.sample()
 _, reward, done, _ = env.step(action)
 episode_reward += reward
 if done:
 print('Reward: %s' % episode_reward)
 break

 Finally, run the main function. Include a
 __name__ check to ensure that main only runs
 when you invoke it directly with python bot_2_random.py.
 If you do not add the if check, main will
 always be triggered when the Python file is executed,
 even when you import the file. Consequently, it’s a
 good practice to place the code in a main function,
 executed only when __name__ == '__main__'.

 /AtariBot/bot_2_random.py

 . . .
def main():
. . .
if done:
print('Reward %s' % episode_reward)
break

if **name** == '**main**':
main()

 Save the file and exit the editor. If you’re using nano,
 do so by pressing CTRL+X, Y, then
 ENTER. Then, run your script by typing:

 python bot_2_random.py

 Your program will output a number, akin to the following. Note that
 each time you run the file you will get a different result:

 Output

 Making new env: SpaceInvaders-v0
Reward: 210.0

 These random results present an issue. In order to produce work that
 other researchers and practitioners can benefit from, your results and
 trials must be reproducible. To correct this, reopen the script file:

 nano bot_2_random.py

 After import random, add random.seed(0).
 After env = gym.make('SpaceInvaders-v0'), add
 env.seed(0). Together, these lines “seed” the environment
 with a consistent starting point, ensuring that the results will
 always be reproducible. Your final file will match the following,
 exactly:

 /AtariBot/bot_2_random.py

 """
Bot 2 -- Make a random, baseline agent for the SpaceInvaders game.
"""

import gym
import random

random.seed(0)

def main():
env = gym.make('SpaceInvaders-v0')
env.seed(0)

 env.reset()
 episode_reward = 0
 while True:
 action = env.action_space.sample()
 _, reward, done, _ = env.step(action)
 episode_reward += reward
 if done:
 print('Reward: %s' % episode_reward)
 break

if **name** == '**main**':
main()

 Save the file and close your editor, then run the script by typing the
 following in your terminal:

 python bot_2_random.py

 This will output the following reward, exactly:

 Output

 Making new env: SpaceInvaders-v0
Reward: 555.0

 This is your very first bot, although it’s rather unintelligent since
 it doesn’t account for the surrounding environment when it makes
 decisions. For a more reliable estimate of your bot’s performance, you
 could have the agent run for multiple episodes at a time, reporting
 rewards averaged across multiple episodes. To configure this, first
 reopen the file:

 nano bot_2_random.py

 After random.seed(0), add the following highlighted line
 which tells the agent to play the game for 10 episodes:

 /AtariBot/bot_2_random.py

 . . .
random.seed(0)

num_episodes = 10
. . .

 Right after env.seed(0), start a new list of rewards:

 /AtariBot/bot_2_random.py

 . . .
env.seed(0)
rewards = []
. . .

 Nest all code from env.reset() to the end of
 main() in a for loop, iterating
 num_episodes times. Make sure to indent each line from
 env.reset() to break by four spaces:

 /AtariBot/bot_2_random.py

 . . .
def main():
env = gym.make('SpaceInvaders-v0')
env.seed(0)
rewards = []

 for _ in range(num_episodes):
 env.reset()
 episode_reward = 0

 while True:
 ...

 Right before break, currently the last line of the main
 game loop, add the current episode’s reward to the list of all
 rewards:

 /AtariBot/bot_2_random.py

 . . .
if done:
print('Reward: %s' % episode_reward)
rewards.append(episode_reward)
break
. . .

 At the end of the main function, report the average
 reward:

 /AtariBot/bot_2_random.py

 . . .
def main():
...
print('Reward: %s' % episode_reward)
break
print('Average reward: %.2f' % (sum(rewards) / len(rewards)))
. . .

 Your file will now align with the following. Please note that the
 following code block includes a few comments to clarify key parts of
 the script:

 /AtariBot/bot_2_random.py

 """
Bot 2 -- Make a random, baseline agent for the SpaceInvaders game.
"""

import gym
import random

random.seed(0) # make results reproducible

num_episodes = 10

def main():
 env = gym.make('SpaceInvaders-v0') # create the game
 env.seed(0) # make results reproducible
 rewards = []

 for _ in range(num_episodes):
 env.reset()
 episode_reward = 0
 while True:
 action = env.action_space.sample()
 _, reward, done, _ = env.step(action) # random action
 episode_reward += reward
 if done:
 print('Reward: %d' % episode_reward)
 rewards.append(episode_reward)
 break
 print('Average reward: %.2f' % (sum(rewards) / len(rewards)))

if __name__ == '__main__':
 main()

 Save the file, exit the editor, and run the script:

 python bot_2_random.py

 This will print the following average reward, exactly:

 Output

 Making new env: SpaceInvaders-v0
. . .
Average reward: 163.50

 We now have a more reliable estimate of the baseline score to beat. To
 create a superior agent, though, you will need to understand the
 framework for reinforcement learning. How can one make the abstract
 notion of “decision-making” more concrete?

 Understanding Reinforcement Learning

 In any game, the player’s goal is to maximize their score. In this
 guide, the player’s score is referred to as its reward. To
 maximize their reward, the player must be able to refine its
 decision-making abilities. Formally, a decision is the process of
 looking at the game, or observing the game’s state, and picking an
 action. Our decision-making function is called a policy; a
 policy accepts a state as input and “decides” on an action:

 policy: state -> action

 To build such a function, we will start with a specific set of
 algorithms in reinforcement learning called
 Q-learning algorithms. To illustrate these, consider the
 initial state of a game, which we’ll call state0: your
 spaceship and the aliens are all in their starting positions. Then,
 assume we have access to a magical “Q-table” which tells us how much
 reward each action will earn:

 	state
 	action
 	reward

 	state0
 	shoot
 	10

 	state0
 	right
 	3

 	state0
 	left
 	3

 The shoot action will maximize your reward, as it results
 in the reward with the highest value: 10. As you can see, a Q-table
 provides a straightforward way to make decisions, based on the
 observed state:

 policy: state -> look at Q-table, pick action with greatest reward

 However, most games have too many states to list in a table. In such
 cases, the Q-learning agent learns a Q-function instead of a
 Q-table. We use this Q-function similarly to how we used the Q-table
 previously. Rewriting the table entries as functions gives us the
 following:

 Q(state0, shoot) = 10
Q(state0, right) = 3
Q(state0, left) = 3

 Given a particular state, it’s easy for us to make a decision: we
 simply look at each possible action and its reward, then take the
 action that corresponds with the highest expected reward.
 Reformulating the earlier policy more formally, we have:

 policy: state -> argmax_{action} Q(state, action)

 This satisfies the requirements of a decision-making function: given a
 state in the game, it decides on an action. However, this solution
 depends on knowing Q(state, action) for every state and
 action. To estimate Q(state, action), consider the
 following:

 	
 Given many observations of an agent’s states, actions, and rewards,
 one can obtain an estimate of the reward for every state and action
 by taking a running average.

 	
 Space Invaders is a game with delayed rewards: the player is
 rewarded when the alien is blown up and not when the player shoots.
 However, the player taking an action by shooting is the true impetus
 for the reward. Somehow, the Q-function must assign
 (state0, shoot) a positive reward.

 These two insights are codified in the following equations:

 Q(state, action) = (1 - learning_rate) * Q(state, action) + learning_rate * Q_target
Q_target = reward + discount_factor * max_{action'} Q(state', action')

 These equations use the following definitions:

 	state: the state at current time step

 	action: the action taken at current time step

 	reward: the reward for current time step

 	
 state': the new state for next time step, given that we
 took action a

 	action': all possible actions

 	learning_rate: the learning rate

 	
 discount_factor: the discount factor, how much reward
 “degrades” as we propagate it

 For a complete explanation of these two equations, see this article on
 Understanding Q-Learning.

 With this understanding of reinforcement learning in mind, all that
 remains is to actually run the game and obtain these Q-value estimates
 for a new policy.

 Step 3 — Creating a Simple Q-learning Agent for Frozen Lake

 Now that you have a baseline agent, you can begin creating new agents
 and compare them against the original. In this step, you will create
 an agent that uses
 Q-learning, a
 reinforcement learning technique used to teach an agent which action
 to take given a certain state. This agent will play a new game,
 FrozenLake.
 The setup for this game is described as follows on the Gym website:

 Winter is here. You and your friends were tossing around a frisbee
 at the park when you made a wild throw that left the frisbee out in
 the middle of the lake. The water is mostly frozen, but there are a
 few holes where the ice has melted. If you step into one of those
 holes, you’ll fall into the freezing water. At this time, there’s an
 international frisbee shortage, so it’s absolutely imperative that
 you navigate across the lake and retrieve the disc. However, the ice
 is slippery, so you won’t always move in the direction you intend.

 The surface is described using a grid like the following:

 SFFF (S: starting point, safe)
FHFH (F: frozen surface, safe)
FFFH (H: hole, fall to your doom)
HFFG (G: goal, where the frisbee is located)

 The player starts at the top left, denoted by S, and
 works its way to the goal at the bottom right, denoted by
 G. The available actions are right,
 left, up, and down,
 and reaching the goal results in a score of 1. There are a number of
 holes, denoted H, and falling into one immediately
 results in a score of 0.

 In this section, you will implement a simple Q-learning agent. Using
 what you’ve learned previously, you will create an agent that trades
 off between exploration and exploitation. In this
 context, exploration means the agent acts randomly, and exploitation
 means it uses its Q-values to choose what it believes to be the
 optimal action. You will also create a table to hold the Q-values,
 updating it incrementally as the agent acts and learns.

 Make a copy of your script from Step 2:

 cp bot_2_random.py bot_3_q_table.py

 Then open up this new file for editing:

 nano bot_3_q_table.py

 Begin by updating the comment at the top of the file that describes
 the script’s purpose. Because this is only a comment, this change
 isn’t necessary for the script to function properly, but it can be
 helpful for keeping track of what the script does:

 /AtariBot/bot_3_q_table.py

 """
Bot 3 -- Build simple q-learning agent for FrozenLake
"""
. . .

 Before you make functional modifications to the script, you will need
 to import numpy for its linear algebra utilities. Right
 underneath import gym, add the highlighted line:

 /AtariBot/bot_3_q_table.py

 """
Bot 3 -- Build simple q-learning agent for FrozenLake
"""

import gym
import numpy as np
import random

random.seed(0) # make results reproducible
. . .

 Underneath random.seed(0), add a seed for
 numpy:

 /AtariBot/bot_3_q_table.py

 . . .
import random

random.seed(0) # make results reproducible
np.random.seed(0)
. . .

 Next, make the game states accessible. Update the
 env.reset() line to say the following, which stores the
 initial state of the game in the variable state:

 /AtariBot/bot_3_q_table.py

 . . .
for _ in range(num_episodes):
state = env.reset()
. . .

 Update the env.step(...) line to say the following, which
 stores the next state, state2. You will need both the
 current state and the next one — state2 — to
 update the Q-function.

 /AtariBot/bot_3_q_table.py

 . . .
 while True:
 action = env.action_space.sample()
 state2, reward, done, _ = env.step(action)
 . . .

 After episode_reward += reward, add a line updating the
 variable state. This keeps the variable
 state updated for the next iteration, as you will expect
 state to reflect the current state:

 /AtariBot/bot_3_q_table.py

 . . .
while True:
. . .
episode_reward += reward
state = state2
if done:
. . .

 In the if done block, delete the
 print statement which prints the reward for each episode.
 Instead, you’ll output the average reward over many episodes. The
 if done block will then look like this:

 /AtariBot/bot_3_q_table.py

 . . .
 if done:
 rewards.append(episode_reward)
 break
 . . .

 After these modifications your game loop will match the following:

 /AtariBot/bot_3_q_table.py

 . . .
 for _ in range(num_episodes):
 state = env.reset()
 episode_reward = 0
 while True:
 action = env.action_space.sample()
 state2, reward, done, _ = env.step(action)
 episode_reward += reward
 state = state2
 if done:
 rewards.append(episode_reward))
 break
 . . .

 Next, add the ability for the agent to trade off between exploration
 and exploitation. Right before your main game loop (which starts with
 for...), create the Q-value table:

 /AtariBot/bot_3_q_table.py

 . . .
 Q = np.zeros((env.observation_space.n, env.action_space.n))
 for _ in range(num_episodes):
 . . .

 Then, rewrite the for loop to expose the episode number:

 /AtariBot/bot_3_q_table.py

 . . .
 Q = np.zeros((env.observation_space.n, env.action_space.n))
 for episode in range(1, num_episodes + 1):
 . . .

 Inside the while True: inner game loop, create
 noise. Noise, or meaningless, random data, is
 sometimes introduced when training deep neural networks because it can
 improve both the performance and the accuracy of the model. Note that
 the higher the noise, the less the values in
 Q[state, :] matter. As a result, the higher the noise,
 the more likely that the agent acts independently of its knowledge of
 the game. In other words, higher noise encourages the agent to
 explore random actions:

 /AtariBot/bot_3_q_table.py

 . . .
 while True:
 noise = np.random.random((1, env.action_space.n)) / (episode**2.)
 action = env.action_space.sample()
 . . .

 Note that as episodes increases, the amount of noise
 decreases quadratically: as time goes on, the agent explores less and
 less because it can trust its own assessment of the game’s reward and
 begin to exploit its knowledge.

 Update the action line to have your agent pick actions
 according to the Q-value table, with some exploration built in:

 /AtariBot/bot_3_q_table.py

 . . .
 noise = np.random.random((1, env.action_space.n)) / (episode**2.)
 action = np.argmax(Q[state, :] + noise)
 state2, reward, done, _ = env.step(action)
 . . .

 Your main game loop will then match the following:

 /AtariBot/bot_3_q_table.py

 . . .
 Q = np.zeros((env.observation_space.n, env.action_space.n))
 for episode in range(1, num_episodes + 1):
 state = env.reset()
 episode_reward = 0
 while True:
 noise = np.random.random((1, env.action_space.n)) / (episode**2.)
 action = np.argmax(Q[state, :] + noise)
 state2, reward, done, _ = env.step(action)
 episode_reward += reward
 state = state2
 if done:
 rewards.append(episode_reward)
 break
 . . .

 Next, you will update your Q-value table using the
 Bellman update equation, an equation widely used in machine learning to find the optimal
 policy within a given environment.

 The Bellman equation incorporates two ideas that are highly relevant
 to this project. First, taking a particular action from a particular
 state many times will result in a good estimate for the Q-value
 associated with that state and action. To this end, you will increase
 the number of episodes this bot must play through in order to return a
 stronger Q-value estimate. Second, rewards must propagate through
 time, so that the original action is assigned a non-zero reward. This
 idea is clearest in games with delayed rewards; for example, in Space
 Invaders, the player is rewarded when the alien is blown up and not
 when the player shoots. However, the player shooting is the true
 impetus for a reward. Likewise, the Q-function must assign
 (state0, shoot) a positive reward.

 First, update num_episodes to equal 4000:

 /AtariBot/bot_3_q_table.py

 . . .
np.random.seed(0)

num_episodes = 4000
. . .

 Then, add the necessary hyperparameters to the top of the file in the
 form of two more variables:

 /AtariBot/bot_3_q_table.py

 . . .
num_episodes = 4000
discount_factor = 0.8
learning_rate = 0.9
. . .

 Compute the new target Q-value, right after the line containing
 env.step(...):

 /AtariBot/bot_3_q_table.py

 . . .
 state2, reward, done, _ = env.step(action)
 Qtarget = reward + discount_factor * np.max(Q[state2, :])
 episode_reward += reward
 . . .

 On the line directly after Qtarget, update the Q-value
 table using a weighted average of the old and new Q-values:

 /AtariBot/bot_3_q_table.py

 . . .
 Qtarget = reward + discount_factor * np.max(Q[state2, :])
 Q[state, action] = (
 1-learning_rate
) * Q[state, action] + learning_rate * Qtarget
 episode_reward += reward
 . . .

 Check that your main game loop now matches the following:

 /AtariBot/bot_3_q_table.py

 . . .
 Q = np.zeros((env.observation_space.n, env.action_space.n))
 for episode in range(1, num_episodes + 1):
 state = env.reset()
 episode_reward = 0
 while True:
 noise = np.random.random((1, env.action_space.n)) / (episode**2.)
 action = np.argmax(Q[state, :] + noise)
 state2, reward, done, _ = env.step(action)
 Qtarget = reward + discount_factor * np.max(Q[state2, :])
 Q[state, action] = (
 1-learning_rate
) * Q[state, action] + learning_rate * Qtarget
 episode_reward += reward
 state = state2
 if done:
 rewards.append(episode_reward)
 break
 . . .

 Our logic for training the agent is now complete. All that’s left is
 to add reporting mechanisms.

 Even though Python does not enforce strict type checking, add types to
 your function declarations for cleanliness. At the top of the file,
 before the first line reading import gym, import the
 List type:

 /AtariBot/bot_3_q_table.py

 . . .
from typing import List
import gym
. . .

 Right after learning_rate = 0.9, outside of the
 main function, declare the interval and format for
 reports:

 /AtariBot/bot_3_q_table.py

 . . .
learning_rate = 0.9
report_interval = 500
report = '100-ep Average: %.2f . Best 100-ep Average: %.2f . Average: %.2f ' \
 '(Episode %d)'

def main():
. . .

 Before the main function, add a new function that will
 populate this report string, using the list of all
 rewards:

 /AtariBot/bot_3_q_table.py

 . . .
report = '100-ep Average: %.2f . Best 100-ep Average: %.2f . Average: %.2f ' \
 '(Episode %d)'

def print_report(rewards: List, episode: int):
"""Print rewards report for current episode
- Average for last 100 episodes
- Best 100-episode average across all time
- Average for all episodes across time
"""
print(report % (
np.mean(rewards[-100:]),
max([np.mean(rewards[i:i+100]) for i in range(len(rewards) - 100)]),
np.mean(rewards),
episode))

def main():
. . .

 Change the game to FrozenLake instead of
 SpaceInvaders:

 /AtariBot/bot_3_q_table.py

 . . .
def main():
env = gym.make('FrozenLake-v0') # create the game
. . .

 After rewards.append(...), print the average reward over
 the last 100 episodes and print the average reward across all
 episodes:

 /AtariBot/bot_3_q_table.py

 . . .
 if done:
 rewards.append(episode_reward)
 if episode % report_interval == 0:
 print_report(rewards, episode)
 . . .

 At the end of the main() function, report both averages
 once more. Do this by replacing the line that reads
 print('Average reward: %.2f' % (sum(rewards) / len(rewards)))
 with the following highlighted line:

 /AtariBot/bot_3_q_table.py

 . . .
def main():
...
break
print_report(rewards, -1)
. . .

 Finally, you have completed your Q-learning agent. Check that your
 script aligns with the following:

 /AtariBot/bot_3_q_table.py

 """
Bot 3 -- Build simple q-learning agent for FrozenLake
"""

from typing import List
import gym
import numpy as np
import random

random.seed(0) # make results reproducible
np.random.seed(0) # make results reproducible

num_episodes = 4000
discount_factor = 0.8
learning_rate = 0.9
report_interval = 500
report = '100-ep Average: %.2f . Best 100-ep Average: %.2f . Average: %.2f ' \
 '(Episode %d)'

def print_report(rewards: List, episode: int):
 """Print rewards report for current episode
 - Average for last 100 episodes
 - Best 100-episode average across all time
 - Average for all episodes across time
 """
 print(report % (
 np.mean(rewards[-100:]),
 max([np.mean(rewards[i:i+100]) for i in range(len(rewards) - 100)]),
 np.mean(rewards),
 episode))

def main():
 env = gym.make('FrozenLake-v0') # create the game
 env.seed(0) # make results reproducible
 rewards = []

 Q = np.zeros((env.observation_space.n, env.action_space.n))
 for episode in range(1, num_episodes + 1):
 state = env.reset()
 episode_reward = 0
 while True:
 noise = np.random.random((1, env.action_space.n)) / (episode**2.)
 action = np.argmax(Q[state, :] + noise)
 state2, reward, done, _ = env.step(action)
 Qtarget = reward + discount_factor * np.max(Q[state2, :])
 Q[state, action] = (
 1-learning_rate
) * Q[state, action] + learning_rate * Qtarget
 episode_reward += reward
 state = state2
 if done:
 rewards.append(episode_reward)
 if episode % report_interval == 0:
 print_report(rewards, episode)
 break
 print_report(rewards, -1)

if __name__ == '__main__':
 main()

 Save the file, exit your editor, and run the script:

 python bot_3_q_table.py

 Your output will match the following:

 Output

 100-ep Average: 0.11 . Best 100-ep Average: 0.12 . Average: 0.03 (Episode 500)
100-ep Average: 0.25 . Best 100-ep Average: 0.24 . Average: 0.09 (Episode 1000)
100-ep Average: 0.39 . Best 100-ep Average: 0.48 . Average: 0.19 (Episode 1500)
100-ep Average: 0.43 . Best 100-ep Average: 0.55 . Average: 0.25 (Episode 2000)
100-ep Average: 0.44 . Best 100-ep Average: 0.55 . Average: 0.29 (Episode 2500)
100-ep Average: 0.64 . Best 100-ep Average: 0.68 . Average: 0.32 (Episode 3000)
100-ep Average: 0.63 . Best 100-ep Average: 0.71 . Average: 0.36 (Episode 3500)
100-ep Average: 0.56 . Best 100-ep Average: 0.78 . Average: 0.40 (Episode 4000)
100-ep Average: 0.56 . Best 100-ep Average: 0.78 . Average: 0.40 (Episode -1)

 You now have your first non-trivial bot for games, but let’s put this
 average reward of 0.78 into perspective. According to the
 Gym FrozenLake page, “solving” the game means attaining a 100-episode average of
 0.78. Informally, “solving” means “plays the game very
 well”. While not in record time, the Q-table agent is able to solve
 FrozenLake in 4000 episodes.

 However, the game may be more complex. Here, you used a table to store
 all of the 144 possible states, but consider tic tac toe in which
 there are 19,683 possible states. Likewise, consider Space Invaders
 where there are too many possible states to count. A Q-table is not
 sustainable as games grow increasingly complex. For this reason, you
 need some way to approximate the Q-table. As you continue
 experimenting in the next step, you will design a function that can
 accept states and actions as inputs and output a Q-value.

 Step 4 — Building a Deep Q-learning Agent for Frozen Lake

 In reinforcement learning, the neural network effectively predicts the
 value of Q based on the state and
 action inputs, using a table to store all the possible
 values, but this becomes unstable in complex games. Deep reinforcement
 learning instead uses a neural network to approximate the Q-function.
 For more details, see
 Understanding Deep Q-Learning.

 To get accustomed to
 Tensorflow, a deep learning
 library you installed in Step 1, you will reimplement all of the logic
 used so far with Tensorflow’s abstractions and you’ll use a neural
 network to approximate your Q-function. However, your neural network
 will be extremely simple: your output Q(s) is a matrix
 W multiplied by your input s. This is known
 as a neural network with one fully-connected layer:

 Q(s) = Ws

 To reiterate, the goal is to reimplement all of the logic from the
 bots we’ve already built using Tensorflow’s abstractions. This will
 make your operations more efficient, as Tensorflow can then perform
 all computation on the GPU.

 Begin by duplicating your Q-table script from Step 3:

 cp bot_3_q_table.py bot_4_q_network.py

 Then open the new file with nano or your preferred text
 editor:

 nano bot_4_q_network.py

 First, update the comment at the top of the file:

 /AtariBot/bot_4_q_network.py

 """
Bot 4 -- Use Q-learning network to train bot
"""

. . .

 Next, import the Tensorflow package by adding an
 import directive right below import random.
 Additionally, add tf.set_radon_seed(0) right below
 np.random.seed(0). This will ensure that the results of
 this script will be repeatable across all sessions:

 /AtariBot/bot_4_q_network.py

 . . .
import random
import tensorflow as tf

random.seed(0)
np.random.seed(0)
tf.set_random_seed(0)
. . .

 Redefine your hyperparameters at the top of the file to match the
 following and add a function called
 exploration_probability, which will return the
 probability of exploration at each step. Remember that, in this
 context, “exploration” means taking a random action, as opposed to
 taking the action recommended by the Q-value estimates:

 /AtariBot/bot_4_q_network.py

 . . .
num_episodes = 4000
discount_factor = 0.99
learning_rate = 0.15
report_interval = 500
exploration_probability = lambda episode: 50. / (episode + 10)
report = '100-ep Average: %.2f . Best 100-ep Average: %.2f . Average: %.2f ' \
 '(Episode %d)'
. . .

 Next, you will add a one-hot encoding function. In short,
 one-hot encoding is a process through which variables are converted
 into a form that helps machine learning algorithms make better
 predictions. If you’d like to learn more about one-hot encoding, you
 can check out
 Adversarial Examples in Computer Vision: How to Build then Fool an
 Emotion-Based Dog Filter.

 Directly beneath report = ..., add a
 one_hot function:

 /AtariBot/bot_4_q_network.py

 . . .
report = '100-ep Average: %.2f . Best 100-ep Average: %.2f . Average: %.2f ' \
 '(Episode %d)'

def one_hot(i: int, n: int) -> np.array:
"""Implements one-hot encoding by selecting the ith standard basis vector"""
return np.identity(n)[i].reshape((1, -1))

def print_report(rewards: List, episode: int):
. . .

 Next, you will rewrite your algorithm logic using Tensorflow’s
 abstractions. Before doing that, though, you’ll need to first create
 placeholders for your data.

 In your main function, directly beneath
 rewards=[], insert the following highlighted content.
 Here, you define placeholders for your observation at time
 t (as obs_t_ph) and time
 t+1 (as obs_tp1_ph), as well as
 placeholders for your action, reward, and Q target:

 /AtariBot/bot_4_q_network.py

 . . .
def main():
env = gym.make('FrozenLake-v0') # create the game
env.seed(0) # make results reproducible
rewards = []

 # 1. Setup placeholders
 n_obs, n_actions = env.observation_space.n, env.action_space.n
 obs_t_ph = tf.placeholder(shape=[1, n_obs], dtype=tf.float32)
 obs_tp1_ph = tf.placeholder(shape=[1, n_obs], dtype=tf.float32)
 act_ph = tf.placeholder(tf.int32, shape=())
 rew_ph = tf.placeholder(shape=(), dtype=tf.float32)
 q_target_ph = tf.placeholder(shape=[1, n_actions], dtype=tf.float32)

 Q = np.zeros((env.observation_space.n, env.action_space.n))
 for episode in range(1, num_episodes + 1):
 . . .

 Directly beneath the line beginning with q_target_ph =,
 insert the following highlighted lines. This code starts your
 computation by computing Q(s, a) for all
 a to make q_current and
 Q(s’, a’) for all a’ to make
 q_target:

 /AtariBot/bot_4_q_network.py

 . . .
 rew_ph = tf.placeholder(shape=(), dtype=tf.float32)
 q_target_ph = tf.placeholder(shape=[1, n_actions], dtype=tf.float32)

 # 2. Setup computation graph
 W = tf.Variable(tf.random_uniform([n_obs, n_actions], 0, 0.01))
 q_current = tf.matmul(obs_t_ph, W)
 q_target = tf.matmul(obs_tp1_ph, W)

 Q = np.zeros((env.observation_space.n, env.action_space.n))
 for episode in range(1, num_episodes + 1):
 . . .

 Again directly beneath the last line you added, insert the following
 higlighted code. The first two lines are equivalent to the line added
 in Step 3 that computes Qtarget, where
 Qtarget = reward + discount_factor * np.max(Q[state2, :]). The next two lines set up your loss, while the last line computes
 the action that maximizes your Q-value:

 /AtariBot/bot_4_q_network.py

 . . .
 q_current = tf.matmul(obs_t_ph, W)
 q_target = tf.matmul(obs_tp1_ph, W)

 q_target_max = tf.reduce_max(q_target_ph, axis=1)
 q_target_sa = rew_ph + discount_factor * q_target_max
 q_current_sa = q_current[0, act_ph]
 error = tf.reduce_sum(tf.square(q_target_sa - q_current_sa))
 pred_act_ph = tf.argmax(q_current, 1)

 Q = np.zeros((env.observation_space.n, env.action_space.n))
 for episode in range(1, num_episodes + 1):
 . . .

 After setting up your algorithm and the loss function, define your
 optimizer:

 /AtariBot/bot_4_q_network.py

 . . .
 error = tf.reduce_sum(tf.square(q_target_sa - q_current_sa))
 pred_act_ph = tf.argmax(q_current, 1)

 # 3. Setup optimization
 trainer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
 update_model = trainer.minimize(error)

 Q = np.zeros((env.observation_space.n, env.action_space.n))
 for episode in range(1, num_episodes + 1):
 . . .

 Next, set up the body of the game loop. To do this, pass data to the
 Tensorflow placeholders and Tensorflow’s abstractions will handle the
 computation on the GPU, returning the result of the algorithm.

 Start by deleting the old Q-table and logic. Specifically, delete the
 lines that define Q (right before the
 for loop), noise (in the
 while loop), action, Qtarget,
 and Q[state, action]. Rename state to
 obs_t and state2 to obs_tp1 to
 align with the Tensorflow placeholders you set previously. When
 finished, your for loop will match the following:

 /AtariBot/bot_4_q_network.py

 . . .
 # 3. Setup optimization
 trainer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
 update_model = trainer.minimize(error)

 for episode in range(1, num_episodes + 1):
 obs_t = env.reset()
 episode_reward = 0
 while True:

 obs_tp1, reward, done, _ = env.step(action)

 episode_reward += reward
 obs_t = obs_tp1
 if done:
 ...

 Directly above the for loop, add the following two
 highlighted lines. These lines initialize a Tensorflow session which
 in turn manages the resources needed to run operations on the GPU. The
 second line initializes all the variables in your computation graph;
 for example, initializing weights to 0 before updating them.
 Additionally, you will nest the for loop within the
 with statement, so indent the entire
 for loop by four spaces:

 /AtariBot/bot_4_q_network.py

 . . .
 trainer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
 update_model = trainer.minimize(error)

 with tf.Session() as session:
 session.run(tf.global_variables_initializer())

 for episode in range(1, num_episodes + 1):
 obs_t = env.reset()
 ...

 Before the line reading
 obs_tp1, reward, done, _ = env.step(action), insert the
 following lines to compute the action. This code
 evaluates the corresponding placeholder and replaces the action with a
 random action with some probability:

 /AtariBot/bot_4_q_network.py

 . . .
 while True:
 # 4. Take step using best action or random action
 obs_t_oh = one_hot(obs_t, n_obs)
 action = session.run(pred_act_ph, feed_dict={obs_t_ph: obs_t_oh})[0]
 if np.random.rand(1) < exploration_probability(episode):
 action = env.action_space.sample()
 . . .

 After the line containing env.step(action), insert the
 following to train the neural network in estimating your Q-value
 function:

 /AtariBot/bot_4_q_network.py

 . . .
 obs_tp1, reward, done, _ = env.step(action)

 # 5. Train model
 obs_tp1_oh = one_hot(obs_tp1, n_obs)
 q_target_val = session.run(q_target, feed_dict={
 obs_tp1_ph: obs_tp1_oh
 })
 session.run(update_model, feed_dict={
 obs_t_ph: obs_t_oh,
 rew_ph: reward,
 q_target_ph: q_target_val,
 act_ph: action
 })
 episode_reward += reward
 . . .

 Your final file will match this source code:

 /AtariBot/bot_4_q_network.py

 """
Bot 4 -- Use Q-learning network to train bot
"""

from typing import List
import gym
import numpy as np
import random
import tensorflow as tf

random.seed(0)
np.random.seed(0)
tf.set_random_seed(0)

num_episodes = 4000
discount_factor = 0.99
learning_rate = 0.15
report_interval = 500
exploration_probability = lambda episode: 50. / (episode + 10)
report = '100-ep Average: %.2f . Best 100-ep Average: %.2f . Average: %.2f ' \
 '(Episode %d)'

def one_hot(i: int, n: int) -> np.array:
 """Implements one-hot encoding by selecting the ith standard basis vector"""
 return np.identity(n)[i].reshape((1, -1))

def print_report(rewards: List, episode: int):
 """Print rewards report for current episode
 - Average for last 100 episodes
 - Best 100-episode average across all time
 - Average for all episodes across time
 """
 print(report % (
 np.mean(rewards[-100:]),
 max([np.mean(rewards[i:i+100]) for i in range(len(rewards) - 100)]),
 np.mean(rewards),
 episode))

def main():
 env = gym.make('FrozenLake-v0') # create the game
 env.seed(0) # make results reproducible
 rewards = []

 # 1. Setup placeholders
 n_obs, n_actions = env.observation_space.n, env.action_space.n
 obs_t_ph = tf.placeholder(shape=[1, n_obs], dtype=tf.float32)
 obs_tp1_ph = tf.placeholder(shape=[1, n_obs], dtype=tf.float32)
 act_ph = tf.placeholder(tf.int32, shape=())
 rew_ph = tf.placeholder(shape=(), dtype=tf.float32)
 q_target_ph = tf.placeholder(shape=[1, n_actions], dtype=tf.float32)

 # 2. Setup computation graph
 W = tf.Variable(tf.random_uniform([n_obs, n_actions], 0, 0.01))
 q_current = tf.matmul(obs_t_ph, W)
 q_target = tf.matmul(obs_tp1_ph, W)

 q_target_max = tf.reduce_max(q_target_ph, axis=1)
 q_target_sa = rew_ph + discount_factor * q_target_max
 q_current_sa = q_current[0, act_ph]
 error = tf.reduce_sum(tf.square(q_target_sa - q_current_sa))
 pred_act_ph = tf.argmax(q_current, 1)

 # 3. Setup optimization
 trainer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
 update_model = trainer.minimize(error)

 with tf.Session() as session:
 session.run(tf.global_variables_initializer())

 for episode in range(1, num_episodes + 1):
 obs_t = env.reset()
 episode_reward = 0
 while True:

 # 4. Take step using best action or random action
 obs_t_oh = one_hot(obs_t, n_obs)
 action = session.run(pred_act_ph, feed_dict={obs_t_ph: obs_t_oh})[0]
 if np.random.rand(1) < exploration_probability(episode):
 action = env.action_space.sample()
 obs_tp1, reward, done, _ = env.step(action)

 # 5. Train model
 obs_tp1_oh = one_hot(obs_tp1, n_obs)
 q_target_val = session.run(q_target, feed_dict={
 obs_tp1_ph: obs_tp1_oh
 })
 session.run(update_model, feed_dict={
 obs_t_ph: obs_t_oh,
 rew_ph: reward,
 q_target_ph: q_target_val,
 act_ph: action
 })
 episode_reward += reward
 obs_t = obs_tp1

 if done:
 rewards.append(episode_reward)
 if episode % report_interval == 0:
 print_report(rewards, episode)
 break
 print_report(rewards, -1)

if __name__ == '__main__':
 main()

 Save the file, exit your editor, and run the script:

 python bot_4_q_network.py

 Your output will end with the following, exactly:

 Output

 100-ep Average: 0.11 . Best 100-ep Average: 0.11 . Average: 0.05 (Episode 500)
100-ep Average: 0.41 . Best 100-ep Average: 0.54 . Average: 0.19 (Episode 1000)
100-ep Average: 0.56 . Best 100-ep Average: 0.73 . Average: 0.31 (Episode 1500)
100-ep Average: 0.57 . Best 100-ep Average: 0.73 . Average: 0.36 (Episode 2000)
100-ep Average: 0.65 . Best 100-ep Average: 0.73 . Average: 0.41 (Episode 2500)
100-ep Average: 0.65 . Best 100-ep Average: 0.73 . Average: 0.43 (Episode 3000)
100-ep Average: 0.69 . Best 100-ep Average: 0.73 . Average: 0.46 (Episode 3500)
100-ep Average: 0.77 . Best 100-ep Average: 0.79 . Average: 0.48 (Episode 4000)
100-ep Average: 0.77 . Best 100-ep Average: 0.79 . Average: 0.48 (Episode -1)

 You’ve now trained your very first deep Q-learning agent. For a game
 as simple as FrozenLake, your deep Q-learning agent required 4000
 episodes to train. Imagine if the game were far more complex. How many
 training samples would that require to train? As it turns out, the
 agent could require millions of samples. The number of
 samples required is referred to as sample complexity, a
 concept explored further in the next section.

 Understanding Bias-Variance Tradeoffs

 Generally speaking, sample complexity is at odds with model complexity
 in machine learning:

 	
 Model complexity: One wants a sufficiently complex
 model to solve their problem. For example, a model as simple as a
 line is not sufficiently complex to predict a car’s trajectory.

 	
 Sample complexity: One would like a model that does
 not require many samples. This could be because they have a limited
 access to labeled data, an insufficient amount of computing power,
 limited memory, etc.

 Say we have two models, one simple and one extremely complex. For both
 models to attain the same performance, bias-variance tells us that the
 extremely complex model will need exponentially more samples to train.
 Case in point: your neural network-based Q-learning agent required
 4000 episodes to solve FrozenLake. Adding a second layer to the neural
 network agent quadruples the number of necessary training episodes.
 With increasingly complex neural networks, this divide only grows. To
 maintain the same error rate, increasing model complexity increases
 the sample complexity exponentially. Likewise, decreasing sample
 complexity decreases model complexity. Thus, we cannot maximize model
 complexity and minimize sample complexity to our heart’s desire.

 We can, however, leverage our knowledge of this tradeoff. For a visual
 interpretation of the mathematics behind the
 bias-variance decomposition, see
 Understanding the Bias-Variance Tradeoff. At a high level, the bias-variance decomposition is a breakdown of
 “true error” into two components: bias and variance. We refer to “true
 error” as mean squared error (MSE), which is the expected
 difference between our predicted labels and the true labels. The
 following is a plot showing the change of “true error” as model
 complexity increases:

 [image: Mean Squared Error curve]
 Mean Squared Error curve

 Step 5 — Building a Least Squares Agent for Frozen Lake

 The least squares method, also known as
 linear regression, is a means of regression analysis used
 widely in the fields of mathematics and data science. In machine
 learning, it’s often used to find the optimal linear model of two
 parameters or datasets.

 In Step 4, you built a neural network to compute Q-values. Instead of
 a neural network, in this step you will use ridge regression,
 a variant of least squares, to compute this vector of Q-values. The
 hope is that with a model as uncomplicated as least squares, solving
 the game will require fewer training episodes.

 Start by duplicating the script from Step 3:

 cp bot_3_q_table.py bot_5_ls.py

 Open the new file:

 nano bot_5_ls.py

 Again, update the comment at the top of the file describing what this
 script will do:

 /AtariBot/bot_4_q_network.py

 """
Bot 5 -- Build least squares q-learning agent for FrozenLake
"""
. . .

 Before the block of imports near the top of your file, add two more
 imports for type checking:

 /AtariBot/bot_5_ls.py

 . . .
from typing import Tuple
from typing import Callable
from typing import List
import gym
. . .

 In your list of hyperparameters, add another hyperparameter,
 w_lr, to control the second Q-function’s learning rate.
 Additionally, update the number of episodes to 5000 and the discount
 factor to 0.85. By changing both the
 num_episodes and
 discount_factor hyperparameters to larger values, the
 agent will be able to issue a stronger performance:

 /AtariBot/bot_5_ls.py

 . . .
num_episodes = 5000
discount_factor = 0.85
learning_rate = 0.9
w_lr = 0.5
report_interval = 500
. . .

 Before your print_report function, add the following
 higher-order function. It returns a lambda — an anonymous function —
 that abstracts away the model:

 /AtariBot/bot_5_ls.py

 . . .
report_interval = 500
report = '100-ep Average: %.2f . Best 100-ep Average: %.2f . Average: %.2f ' \
 '(Episode %d)'

def makeQ(model: np.array) -> Callable[[np.array], np.array]:
"""Returns a Q-function, which takes state -> distribution over actions"""
return lambda X: X.dot(model)

def print_report(rewards: List, episode: int):
. . .

 After makeQ, add another function,
 initialize, which initializes the model using
 normally-distributed values:

 /AtariBot/bot_5_ls.py

 . . .
def makeQ(model: np.array) -> Callable[[np.array], np.array]:
"""Returns a Q-function, which takes state -> distribution over actions"""
return lambda X: X.dot(model)

def initialize(shape: Tuple):
"""Initialize model"""
W = np.random.normal(0.0, 0.1, shape)
Q = makeQ(W)
return W, Q

def print_report(rewards: List, episode: int):
. . .

 After the initialize block, add a
 train method that computes the ridge regression
 closed-form solution, then weights the old model with the new one. It
 returns both the model and the abstracted Q-function:

 /AtariBot/bot_5_ls.py

 . . .
def initialize(shape: Tuple):
...
return W, Q

def train(X: np.array, y: np.array, W: np.array) -> Tuple[np.array, Callable]:
"""Train the model, using solution to ridge regression"""
I = np.eye(X.shape[1])
newW = np.linalg.inv(X.T.dot(X) + 10e-4 _ I).dot(X.T.dot(y))
W = w_lr _ newW + (1 - w_lr) * W
Q = makeQ(W)
return W, Q

def print_report(rewards: List, episode: int):
. . .

 After train, add one last function, one_hot,
 to perform one-hot encoding for your states and actions:

 /AtariBot/bot_5_ls.py

 . . .
def train(X: np.array, y: np.array, W: np.array) -> Tuple[np.array, Callable]:
...
return W, Q

def one_hot(i: int, n: int) -> np.array:
"""Implements one-hot encoding by selecting the ith standard basis vector"""
return np.identity(n)[i]

def print_report(rewards: List, episode: int):
. . .

 Following this, you will need to modify the training logic. In the
 previous script you wrote, the Q-table was updated every iteration.
 This script, however, will collect samples and labels every time step
 and train a new model every 10 steps. Additionally, instead of holding
 a Q-table or a neural network, it will use a least squares model to
 predict Q-values.

 Go to the main function and replace the definition of the
 Q-table (Q = np.zeros(...)) with the following:

 /AtariBot/bot_5_ls.py

 . . .
def main():
...
rewards = []

 n_obs, n_actions = env.observation_space.n, env.action_space.n
 W, Q = initialize((n_obs, n_actions))
 states, labels = [], []
 for episode in range(1, num_episodes + 1):
 . . .

 Scroll down before the for loop. Directly below this, add
 the following lines which reset the states and
 labels lists if there is too much information stored:

 /AtariBot/bot_5_ls.py

 . . .
def main():
...
for episode in range(1, num_episodes + 1):
if len(states) >= 10000:
states, labels = [], []
. . .

 Modify the line directly after this one, which defines
 state = env.reset(), so that it becomes the following.
 This will one-hot encode the state immediately, as all of its usages
 will require a one-hot vector:

 /AtariBot/bot_5_ls.py

 . . .
for episode in range(1, num_episodes + 1):
if len(states) >= 10000:
states, labels = [], []
state = one_hot(env.reset(), n_obs)
. . .

 Before the first line in your while main game loop, amend
 the list of states:

 /AtariBot/bot_5_ls.py

 . . .
for episode in range(1, num_episodes + 1):
...
episode_reward = 0
while True:
states.append(state)
noise = np.random.random((1, env.action_space.n)) / (episode**2.)
. . .

 Update the computation for action, decrease the
 probability of noise, and modify the Q-function evaluation:

 /AtariBot/bot_5_ls.py

 . . .
while True:
states.append(state)
noise = np.random.random((1, n*actions)) / episode
action = np.argmax(Q(state) + noise)
state2, reward, done, * = env.step(action)
. . .

 Add a one-hot version of state2 and amend the Q-function
 call in your definition for Qtarget as follows:

 /AtariBot/bot_5_ls.py

 . . .
while True:
...
state2, reward, done, _ = env.step(action)

 state2 = one_hot(state2, n_obs)
 Qtarget = reward + discount_factor * np.max(Q(state2))
 . . .

 Delete the line that updates Q[state,action] = ... and
 replace it with the following lines. This code takes the output of the
 current model and updates only the value in this output that
 corresponds to the current action taken. As a result, Q-values for the
 other actions don’t incur loss:

 /AtariBot/bot_5_ls.py

 . . .
state2 = one_hot(state2, n_obs)
Qtarget = reward + discount_factor _ np.max(Q(state2))
label = Q(state)
label[action] = (1 - learning_rate) _ label[action] + learning_rate * Qtarget
labels.append(label)

 episode_reward += reward
 . . .

 Right after state = state2, add a periodic update to the
 model. This trains your model every 10 time steps:

 /AtariBot/bot_5_ls.py

 . . .
state = state2
if len(states) % 10 == 0:
W, Q = train(np.array(states), np.array(labels), W)
if done:
. . .

 Ensure that your code matches the following:

 /AtariBot_5_ls.py

 """
Bot 5 -- Build least squares q-learning agent for FrozenLake
"""

from typing import Tuple
from typing import Callable
from typing import List
import gym
import numpy as np
import random

random.seed(0) # make results reproducible
np.random.seed(0) # make results reproducible

num_episodes = 5000
discount_factor = 0.85
learning_rate = 0.9
w_lr = 0.5
report_interval = 500
report = '100-ep Average: %.2f . Best 100-ep Average: %.2f . Average: %.2f ' \
 '(Episode %d)'

def makeQ(model: np.array) -> Callable[[np.array], np.array]:
 """Returns a Q-function, which takes state -> distribution over actions"""
 return lambda X: X.dot(model)

def initialize(shape: Tuple):
 """Initialize model"""
 W = np.random.normal(0.0, 0.1, shape)
 Q = makeQ(W)
 return W, Q

def train(X: np.array, y: np.array, W: np.array) -> Tuple[np.array, Callable]:
 """Train the model, using solution to ridge regression"""
 I = np.eye(X.shape[1])
 newW = np.linalg.inv(X.T.dot(X) + 10e-4 * I).dot(X.T.dot(y))
 W = w_lr * newW + (1 - w_lr) * W
 Q = makeQ(W)
 return W, Q

def one_hot(i: int, n: int) -> np.array:
 """Implements one-hot encoding by selecting the ith standard basis vector"""
 return np.identity(n)[i]

def print_report(rewards: List, episode: int):
 """Print rewards report for current episode
 - Average for last 100 episodes
 - Best 100-episode average across all time
 - Average for all episodes across time
 """
 print(report % (
 np.mean(rewards[-100:]),
 max([np.mean(rewards[i:i+100]) for i in range(len(rewards) - 100)]),
 np.mean(rewards),
 episode))

def main():
 env = gym.make('FrozenLake-v0') # create the game
 env.seed(0) # make results reproducible
 rewards = []

 n_obs, n_actions = env.observation_space.n, env.action_space.n
 W, Q = initialize((n_obs, n_actions))
 states, labels = [], []
 for episode in range(1, num_episodes + 1):
 if len(states) >= 10000:
 states, labels = [], []
 state = one_hot(env.reset(), n_obs)
 episode_reward = 0
 while True:
 states.append(state)
 noise = np.random.random((1, n_actions)) / episode
 action = np.argmax(Q(state) + noise)
 state2, reward, done, _ = env.step(action)

 state2 = one_hot(state2, n_obs)
 Qtarget = reward + discount_factor * np.max(Q(state2))
 label = Q(state)
 label[action] = (1 - learning_rate) * label[action] + \
 learning_rate * Qtarget
 labels.append(label)

 episode_reward += reward
 state = state2
 if len(states) % 10 == 0:
 W, Q = train(np.array(states), np.array(labels), W)
 if done:
 rewards.append(episode_reward)
 if episode % report_interval == 0:
 print_report(rewards, episode)
 break
 print_report(rewards, -1)

if __name__ == '__main__':
 main()

 Then, save the file, exit the editor, and run the script:

 python bot_5_ls.py

 This will output the following:

 Output

 100-ep Average: 0.17 . Best 100-ep Average: 0.17 . Average: 0.09 (Episode 500)
100-ep Average: 0.11 . Best 100-ep Average: 0.24 . Average: 0.10 (Episode 1000)
100-ep Average: 0.08 . Best 100-ep Average: 0.24 . Average: 0.10 (Episode 1500)
100-ep Average: 0.24 . Best 100-ep Average: 0.25 . Average: 0.11 (Episode 2000)
100-ep Average: 0.32 . Best 100-ep Average: 0.31 . Average: 0.14 (Episode 2500)
100-ep Average: 0.35 . Best 100-ep Average: 0.38 . Average: 0.16 (Episode 3000)
100-ep Average: 0.59 . Best 100-ep Average: 0.62 . Average: 0.22 (Episode 3500)
100-ep Average: 0.66 . Best 100-ep Average: 0.66 . Average: 0.26 (Episode 4000)
100-ep Average: 0.60 . Best 100-ep Average: 0.72 . Average: 0.30 (Episode 4500)
100-ep Average: 0.75 . Best 100-ep Average: 0.82 . Average: 0.34 (Episode 5000)
100-ep Average: 0.75 . Best 100-ep Average: 0.82 . Average: 0.34 (Episode -1)

 Recall that, according to the
 Gym FrozenLake page, “solving” the game means attaining a 100-episode average of 0.78.
 Here the agent acheives an average of 0.82, meaning it was able to
 solve the game in 5000 episodes. Although this does not solve the game
 in fewer episodes, this basic least squares method is still able to
 solve a simple game with roughly the same number of training episodes.
 Although your neural networks may grow in complexity, you’ve shown
 that simple models are sufficient for FrozenLake.

 With that, you have explored three Q-learning agents: one using a
 Q-table, another using a neural network, and a third using least
 squares. Next, you will build a deep reinforcement learning agent for
 a more complex game: Space Invaders.

 Step 6 — Creating a Deep Q-learning Agent for Space Invaders

 Say you tuned the previous Q-learning algorithm’s model complexity and
 sample complexity perfectly, regardless of whether you picked a neural
 network or least squares method. As it turns out, this unintelligent
 Q-learning agent still performs poorly on more complex games, even
 with an especially high number of training episodes. This section will
 cover two techniques that can improve performance, then you will test
 an agent that was trained using these techniques.

 The first general-purpose agent able to continually adapt its behavior
 without any human intervention was developed by the researchers at
 DeepMind, who also trained their agent to play a variety of Atari
 games.
 DeepMind’s original deep Q-learning (DQN) paper
 recognized two important issues:

 	
 Correlated states: Take the state of our game at
 time 0, which we will call s0. Say we update
 Q(s0), according to the rules we derived
 previously. Now, take the state at time 1, which we call
 s1, and update Q(s1) according to
 the same rules. Note that the game’s state at time 0 is very similar
 to its state at time 1. In Space Invaders, for example, the aliens
 may have moved by one pixel each. Said more succinctly,
 s0 and s1 are very similar.
 Likewise, we also expect Q(s0) and
 Q(s1) to be very similar, so updating one affects
 the other. This leads to fluctuating Q values, as an update to
 Q(s0) may in fact counter the update to
 Q(s1). More formally, s0 and
 s1 are correlated. Since the Q-function is
 deterministic, Q(s1) is correlated with
 Q(s0).

 	
 Q-function instability: Recall that the
 Q function is both the model we train and the
 source of our labels. Say that our labels are randomly-selected
 values that truly represent a distribution,
 L. Every time we update Q, we
 change L, meaning that our model is trying to learn
 a moving target. This is an issue, as the models we use assume a
 fixed distribution.

 To combat correlated states and an unstable Q-function:

 	
 One could keep a list of states called a replay buffer.
 Each time step, you add the game state that you observe to this
 replay buffer. You also randomly sample a subset of states from this
 list, and train on those states.

 	
 The team at DeepMind duplicated Q(s, a). One is
 called Q_current(s, a), which is the Q-function you
 update. You need another Q-function for successor states,
 Q_target(s’, a’), which you won’t update. Recall
 Q_target(s’, a’) is used to generate your labels.
 By separating Q_current from
 Q_target and fixing the latter, you fix the
 distribution your labels are sampled from. Then, your deep learning
 model can spend a short period learning this distribution. After a
 period of time, you then re-duplicate Q_current for
 a new Q_target.

 You won’t implement these yourself, but you will load pretrained
 models that trained with these solutions. To do this, create a new
 directory where you will store these models’ parameters:

 mkdir models

 Then use wget to download a pretrained Space Invaders
 model’s parameters:

 wget http://models.tensorpack.com/OpenAIGym/SpaceInvaders-v0.tfmodel -P models

 Next, download a Python script that specifies the model associated
 with the parameters you just downloaded. Note that this pretrained
 model has two constraints on the input that are necessary to keep in
 mind:

 	
 The states must be downsampled, or reduced in size, to 84 x 84.

 	The input consists of four states, stacked.

 We will address these constraints in more detail later on. For now,
 download the script by typing:

 wget https://github.com/alvinwan/bots-for-atari-games/raw/master/src/bot_6_a3c.py

 You will now run this pretrained Space Invaders agent to see how it
 performs. Unlike the past few bots we’ve used, you will write this
 script from scratch.

 Create a new script file:

 nano bot_6_dqn.py

 Begin this script by adding a header comment, importing the necessary
 utilities, and beginning the main game loop:

 /AtariBot/bot_6_dqn.py

 """
Bot 6 - Fully featured deep q-learning network.
"""

import cv2
import gym
import numpy as np
import random
import tensorflow as tf
from bot_6_a3c import a3c_model

def main():

if **name** == '**main**':
main()

 Directly after your imports, set random seeds to make your results
 reproducible. Also, define a hyperparameter
 num_episodes which will tell the script how many episodes
 to run the agent for:

 /AtariBot/bot_6_dqn.py

 . . .
import tensorflow as tf
from bot_6_a3c import a3c_model
random.seed(0) # make results reproducible
tf.set_random_seed(0)

num_episodes = 10

def main():
. . .

 Two lines after declaring num_episodes, define a
 downsample function that downsamples all images to a size
 of 84 x 84. You will downsample all images before passing them into
 the pretrained neural network, as the pretrained model was trained on
 84 x 84 images:

 /AtariBot/bot_6_dqn.py

 . . .
num_episodes = 10

def downsample(state):
return cv2.resize(state, (84, 84), interpolation=cv2.INTER_LINEAR)[None]

def main():
. . .

 Create the game environment at the start of your
 main function and seed the environment so that the
 results are reproducible:

 /AtariBot/bot_6_dqn.py

 . . .
def main():
env = gym.make('SpaceInvaders-v0') # create the game
env.seed(0) # make results reproducible
. . .

 Directly after the environment seed, initialize an empty list to hold
 the rewards:

 /AtariBot/bot_6_dqn.py

 . . .
def main():
env = gym.make('SpaceInvaders-v0') # create the game
env.seed(0) # make results reproducible
rewards = []
. . .

 Initialize the pretrained model with the pretrained model parameters
 that you downloaded at the beginning of this step:

 /AtariBot/bot_6_dqn.py

 . . .
def main():
env = gym.make('SpaceInvaders-v0') # create the game
env.seed(0) # make results reproducible
rewards = []
model = a3c_model(load='models/SpaceInvaders-v0.tfmodel')
. . .

 Next, add some lines telling the script to iterate for
 num_episodes times to compute average performance and
 initialize each episode’s reward to 0. Additionally, add a line to
 reset the environment (env.reset()), collecting the new
 initial state in the process, downsample this initial state with
 downsample(), and start the game loop using a
 while loop:

 /AtariBot/bot_6_dqn.py

 . . .
def main():
env = gym.make('SpaceInvaders-v0') # create the game
env.seed(0) # make results reproducible
rewards = []
model = a3c*model(load='models/SpaceInvaders-v0.tfmodel')
for * in range(num_episodes):
episode_reward = 0
states = [downsample(env.reset())]
while True:
. . .

 Instead of accepting one state at a time, the new neural network
 accepts four states at a time. As a result, you must wait until the
 list of states contains at least four states before
 applying the pretrained model. Add the following lines below the line
 reading while True:. These tell the agent to take a
 random action if there are fewer than four states or to concatenate
 the states and pass it to the pretrained model if there are at least
 four:

 /AtariBot/bot_6_dqn.py

 . . .
 while True:
 if len(states) < 4:
 action = env.action_space.sample()
 else:
 frames = np.concatenate(states[-4:], axis=3)
 action = np.argmax(model([frames]))
 . . .

 Then take an action and update the relevant data. Add a downsampled
 version of the observed state, and update the reward for this episode:

 /AtariBot/bot_6_dqn.py

 . . .
 while True:
 ...
 action = np.argmax(model([frames]))
 state, reward, done, _ = env.step(action)
 states.append(downsample(state))
 episode_reward += reward
 . . .

 Next, add the following lines which check whether the episode is
 done and, if it is, print the episode’s total reward and
 amend the list of all results and break the while loop
 early:

 /AtariBot/bot_6_dqn.py

 . . .
 while True:
 ...
 episode_reward += reward
 if done:
 print('Reward: %d' % episode_reward)
 rewards.append(episode_reward)
 break
 . . .

 Outside of the while and for loops, print
 the average reward. Place this at the end of your
 main function:

 /AtariBot/bot_6_dqn.py

 def main():
...
break
print('Average reward: %.2f' % (sum(rewards) / len(rewards)))

 Check that your file matches the following:

 /AtariBot/bot_6_dqn.py

 """
Bot 6 - Fully featured deep q-learning network.
"""

import cv2
import gym
import numpy as np
import random
import tensorflow as tf
from bot_6_a3c import a3c_model

random.seed(0) # make results reproducible
tf.set_random_seed(0)

num_episodes = 10

def downsample(state):
 return cv2.resize(state, (84, 84), interpolation=cv2.INTER_LINEAR)[None]

def main():
 env = gym.make('SpaceInvaders-v0') # create the game
 env.seed(0) # make results reproducible
 rewards = []

 model = a3c_model(load='models/SpaceInvaders-v0.tfmodel')
 for _ in range(num_episodes):
 episode_reward = 0
 states = [downsample(env.reset())]
 while True:
 if len(states) < 4:
 action = env.action_space.sample()
 else:
 frames = np.concatenate(states[-4:], axis=3)
 action = np.argmax(model([frames]))
 state, reward, done, _ = env.step(action)
 states.append(downsample(state))
 episode_reward += reward
 if done:
 print('Reward: %d' % episode_reward)
 rewards.append(episode_reward)
 break
 print('Average reward: %.2f' % (sum(rewards) / len(rewards)))

if __name__ == '__main__':
 main()

 Save the file and exit your editor. Then, run the script:

 python bot_6_dqn.py

 Your output will end with the following:

 Output

 . . .
Reward: 1230
Reward: 4510
Reward: 1860
Reward: 2555
Reward: 515
Reward: 1830
Reward: 4100
Reward: 4350
Reward: 1705
Reward: 4905
Average reward: 2756.00

 Compare this to the result from the first script, where you ran a
 random agent for Space Invaders. The average reward in that case was
 only about 150, meaning this result is over twenty times better.
 However, you only ran your code for three episodes, as it’s fairly
 slow, and the average of three episodes is not a reliable metric.
 Running this over 10 episodes, the average is 2756; over 100 episodes,
 the average is around 2500. Only with these averages can you
 comfortably conclude that your agent is indeed performing an order of
 magnitude better, and that you now have an agent that plays Space
 Invaders reasonably well.

 However, recall the issue that was raised in the previous section
 regarding sample complexity. As it turns out, this Space Invaders
 agent takes millions of samples to train. In fact, this agent required
 24 hours on four Titan X GPUs to train up to this current level; in
 other words, it took a significant amount of compute to train it
 adequately. Can you train a similarly high-performing agent with far
 fewer samples? The previous steps should arm you with enough knowledge
 to begin exploring this question. Using far simpler models and per
 bias-variance tradeoffs, it may be possible.

 Conclusion

 In this tutorial, you built several bots for games and explored a
 fundamental concept in machine learning called bias-variance. A
 natural next question is: Can you build bots for more complex games,
 such as StarCraft 2? As it turns out, this is a pending research
 question, supplemented with open-source tools from collaborators
 across Google, DeepMind, and Blizzard. If these are problems that
 interest you, see
 open calls for research at OpenAI, for current problems.

 The main takeaway from this tutorial is the bias-variance tradeoff. It
 is up to the machine learning practitioner to consider the effects of
 model complexity. Whereas it is possible to leverage highly complex
 models and layer on excessive amounts of compute, samples, and time,
 reduced model complexity could significantly reduce the resources
 required.

 EPUB/media/file4.png
" JUpYter ML Tutorial Last Gheckpoint: a fow ssconds ago (autosave) Logout

Fle Edit View Inset Cell Kemel Help Trusted | Kemnel O

+ % @& B A ¥ M B C | Coe 4 [

In [1]: import sklearn

EPUB/media/cover.png

EPUB/media/file1.png

EPUB/media/file2.png

EPUB/media/file7.png
In [7]: from sklearn.metrics import accuracy_score

Evaluate accuracy
print (accuracy_score (test_labels, preds))

0.941489361702

EPUB/media/file9.png
Y
3399
efefe el
3999

QQ4Q4 9

X

EPUB/media/file10.png
ERROR

MODEL COMPLEXITY

EPUB/media/file5.png
In [3]:

Look at our data
print (label_names)

print (labels(0])
print (feature_names[0])

print (features(0])

{'malignant’ 'benign']
o

mean radius

[1.79900000e+01 1.03800000e+01

1.18400000e-01
2.41900000e-01
8.58900000e+00
5.37300000e-02
2.53800000e+01
1.62200000e-01
4.60100000e-01

2.77600000e-01
7.87100000e-02
1.53400000e+02
1.58700000e-02
1.73300000e+01
6.65600000e-01
1.18900000e-01]

1.22800000e+02
3.00100000e-01
1.09500000e+00
6.39900000e-03
3.00300000e-02
1.84600000e+02
7.11900000e-01

1.00100000e+03
1.47100000e-01
9.05300000e-01
4.90400000e-02
6.19300000e-03
2.01900000e+03
2.65400000e-01

EPUB/media/file3.png
I

Barometric Overcast Rain

Rising Falling @ Light Heavy

<o O 0

EPUB/media/file0.png

EPUB/media/file8.png
T o
% o
© o o
N IR
Ll
I~ >
My ™M
N NN

VQOAOQ

EPUB/media/file6.png
"
§
§
x
1
3
3
5§
e
S
|
S
0
8
1
!
a
;
3
:
n
5
N

g
z
5
kS
@
a
]
3
8

Train our classifier

model = gnb.fit(train, train_labels)

Make predictions

n (6]

gnb.predict (test)

print (preds)

preds

[(1001100011101010111011011111101111110

1011011111111001111100110011100110010
1111110110000011111111001001001110110
1100011100110100110001110110010110100

1111111001111111111110011011011111100

011)

