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      Foreword

      
        As machine learning is increasingly leveraged to find patterns, conduct
        analysis, and make decisions without final input from humans, it is of
        equal importance to not only provide resources to advance algorithms and
        methodologies, but to also invest in bringing more stakeholders into the
        fold. This book of Python projects in machine learning tries to do just
        that: to equip the developers of today and tomorrow with tools they can
        use to better understand, evaluate, and shape machine learning to help
        ensure that it is serving us all.
      

      
        This book will set you up with a Python programming environment if you
        don’t have one already, then provide you with a conceptual understanding
        of machine learning in the chapter “An Introduction to Machine
        Learning.” What follows next are three Python machine learning projects.
        They will help you create a machine learning classifier, build a neural
        network to recognize handwritten digits, and give you a background in
        deep reinforcement learning through building a bot for Atari.
      

      
        These chapters originally appeared as articles on DigitalOcean
        Community, written by members of the international software developer
        community. If you are interested in contributing to this knowledge base,
        consider proposing a tutorial to the Write for DOnations program at
        do.co/w4do. DigitalOcean offers payment
        to authors and provides a matching donation to tech-focused nonprofits.
      

      
        Other Books in this Series

        
          If you are learning Python or are looking for reference material, you
          can download our free Python eBook,
          How To Code in Python 3 which is available via
          do.co/python-book.
        

        
          For other programming languages and DevOps engineering articles, our
          knowledge base of over 2,100 tutorials is available as a
          Creative-Commons-licensed resource via
          do.co/tutorials.
        

      
    
  
    
      
        Setting Up a Python Programming Environment
        Written by Lisa Tagliaferri
      

      
        Python is a flexible and versatile programming language suitable for
        many use cases, with strengths in scripting, automation, data analysis,
        machine learning, and back-end development. First published in 1991 the
        Python development team was inspired by the British comedy group Monty
        Python to make a programming language that was fun to use. Python 3 is
        the most current version of the language and is considered to be the
        future of Python.
      

      
        This tutorial will help get your remote server or local computer set up
        with a Python 3 programming environment.
        If you already have Python 3 installed, along with pip and venv, feel
          free to move onto the next chapter!
      

      
        Prerequisites

        
          This tutorial will be based on working with a Linux or Unix-like
          (*nix) system and use of a command line or terminal environment. Both
          macOS and specifically the PowerShell program of Windows should be
          able to achieve similar results.
        

      
      
        Step 1 — Installing Python 3

        
          Many operating systems come with Python 3 already installed. You can
          check to see whether you have Python 3 installed by opening up a
          terminal window and typing the following:
        

        
          python3 -V

        
        
          You’ll receive output in the terminal window that will let you know
          the version number. While this number may vary, the output will be
          similar to this:
        

        
          
            Output
          
          Python 3.7.2

        
        
          If you received alternate output, you can navigate in a web browser to
          python.org in order to download
          Python 3 and install it to your machine by following the instructions.
        

        
          Once you are able to type the python3 -V command above
          and receive output that states your computer’s Python version number,
          you are ready to continue.
        

      
      
        Step 2 — Installing pip

        
          To manage software packages for Python, let’s install
          pip, a tool that will install and manage programming
          packages we may want to use in our development projects.
        

        
          If you have downloaded Python from python.org, you should have pip
          already installed. If you are on an Ubuntu or Debian server or
          computer, you can download pip by typing the following:
        

        
          sudo apt install -y python3-pip

        
        
          Now that you have pip installed, you can download Python packages with
          the following command:
        

        
          pip3 install package_name

        
        
          Here, package_name can
          refer to any Python package or library, such as Django for web
          development or NumPy for scientific computing. So if you would like to
          install NumPy, you can do so with the command
          pip3 install numpy.
        

        
          There are a few more packages and development tools to install to
          ensure that we have a robust set-up for our programming environment:
        

        
          sudo apt install build-essential libssl-dev libffi-dev python3-dev

        
        
          Once Python is set up, and pip and other tools are installed, we can
          set up a virtual environment for our development projects.
        

      
      
        Step 3 — Setting Up a Virtual Environment

        
          Virtual environments enable you to have an isolated space on your
          server for Python projects, ensuring that each of your projects can
          have its own set of dependencies that won’t disrupt any of your other
          projects.
        

        
          Setting up a programming environment provides us with greater control
          over our Python projects and over how different versions of packages
          are handled. This is especially important when working with
          third-party packages.
        

        
          You can set up as many Python programming environments as you want.
          Each environment is basically a directory or folder on your server
          that has a few scripts in it to make it act as an environment.
        

        
          While there are a few ways to achieve a programming environment in
          Python, we’ll be using the venv module here, which is
          part of the standard Python 3 library.
        

        
          If you have installed Python with through the installer available from
          python.org, you should have venv ready to go.
        

        
          To install venv into an Ubuntu or
          Debian server or machine, you can install it with the
          following:
        

        
          sudo apt install -y python3-venv

        
        
          With venv installed, we can now create environments. Let’s either
          choose which directory we would like to put our Python programming
          environments in, or create a new directory with mkdir, as
          in:
        

        
          mkdir environments
cd environments

        
        
          Once you are in the directory where you would like the environments to
          live, you can create an environment. You should use the version of
          Python that is installed on your machine as the first part of the
          command (the output you received when typing python -V).
          If that version was Python 3.6.3, you can type the
          following:
        

        
          python3.6 -m venv my_env

        
        
          If, instead, your computer has Python 3.7.3 installed,
          use the following command:
        

        
          python3.7 -m venv my_env

        
        
          Windows machines may allow you to remove the version number entirely:
        

        
          python -m venv my_env

        
        
          Once you run the appropriate command, you can verify that the
          environment is set up be continuing.
        

        
          Essentially, pyvenv sets up a new directory that contains
          a few items which we can view with the ls command:
        

        
          ls my_env

        
        
          
            Output
          
          bin include lib lib64 pyvenv.cfg share

        
        
          Together, these files work to make sure that your projects are
          isolated from the broader context of your local machine, so that
          system files and project files don’t mix. This is good practice for
          version control and to ensure that each of your projects has access to
          the particular packages that it needs. Python Wheels, a built-package
          format for Python that can speed up your software production by
          reducing the number of times you need to compile, will be in the
          Ubuntu 18.04 share directory.
        

        
          To use this environment, you need to activate it, which you can
          achieve by typing the following command that calls the
          activate script:
        

        
          source my_env/bin/activate

        
        
          Your command prompt will now be prefixed with the name of your
          environment, in this case it is called
          my_env. Depending on what version of
          Debian Linux you are running, your prefix may appear somewhat
          differently, but the name of your environment in parentheses should be
          the first thing you see on your line:
        

        
          (my_env) sammy@sammy:~/environments$

        
        
          This prefix lets us know that the environment
          my_env is currently active, meaning
          that when we create programs here they will use only this particular
          environment’s settings and packages.
        

        
          
            Note: Within the virtual environment, you can use
            the command python instead of python3, and
            pip instead of pip3 if you would prefer.
            If you use Python 3 on your machine outside of an environment, you
            will need to use the python3 and
            pip3 commands exclusively.
          

        

        
          After following these steps, your virtual environment is ready to use.
        

      
      
        Step 4 — Creating a “Hello, World” Program

        
          Now that we have our virtual environment set up, let’s create a
          traditional “Hello, World!” program. This will let us test our
          environment and provides us with the opportunity to become more
          familiar with Python if we aren’t already.
        

        
          To do this, we’ll open up a command-line text editor such as nano and
          create a new file:
        

        
          (my_env) sammy@sammy:~/environments$ nano hello.py

        
        
          Once the text file opens up in the terminal window we’ll type out our
          program:
        

        
          print("Hello, World!")

        
        
          Exit nano by typing the CTRL and X keys, and
          when prompted to save the file press y.
        

        
          Once you exit out of nano and return to your shell, let’s run the
          program:
        

        
          (my_env) sammy@sammy:~/environments$ python hello.py

        
        
          The hello.py program that you just created should cause
          your terminal to produce the following output:
        

        
          
            Output
          
          Hello, World!

        
        
          To leave the environment, simply type the command
          deactivate and you will return to your original
          directory.
        

      
      
        Conclusion

        
          At this point you have a Python 3 programming environment set up on
          your machine and you can now begin a coding project!
        

        
          If you would like to learn more about Python, you can download our
          free How To Code in Python 3 eBook via
          do.co/python-book.
        

      
    
  
    
      
        An Introduction to Machine Learning
        Written by Lisa Tagliaferri
      

      
        Machine learning is a subfield of artificial intelligence (AI). The goal
        of machine learning generally is to understand the structure of data and
        fit that data into models that can be understood and utilized by people.
      

      
        Although machine learning is a field within computer science, it differs
        from traditional computational approaches. In traditional computing,
        algorithms are sets of explicitly programmed instructions used by
        computers to calculate or problem solve. Machine learning algorithms
        instead allow for computers to train on data inputs and use statistical
        analysis in order to output values that fall within a specific range.
        Because of this, machine learning facilitates computers in building
        models from sample data in order to automate decision-making processes
        based on data inputs.
      

      
        Any technology user today has benefitted from machine learning. Facial
        recognition technology allows social media platforms to help users tag
        and share photos of friends. Optical character recognition (OCR)
        technology converts images of text into movable type. Recommendation
        engines, powered by machine learning, suggest what movies or television
        shows to watch next based on user preferences. Self-driving cars that
        rely on machine learning to navigate may soon be available to consumers.
      

      
        Machine learning is a continuously developing field. Because of this,
        there are some considerations to keep in mind as you work with machine
        learning methodologies, or analyze the impact of machine learning
        processes.
      

      
        In this tutorial, we’ll look into the common machine learning methods of
        supervised and unsupervised learning, and common algorithmic approaches
        in machine learning, including the k-nearest neighbor algorithm,
        decision tree learning, and deep learning. We’ll explore which
        programming languages are most used in machine learning, providing you
        with some of the positive and negative attributes of each. Additionally,
        we’ll discuss biases that are perpetuated by machine learning
        algorithms, and consider what can be kept in mind to prevent these
        biases when building algorithms.
      

      
        Machine Learning Methods

        
          In machine learning, tasks are generally classified into broad
          categories. These categories are based on how learning is received or
          how feedback on the learning is given to the system developed.
        

        
          Two of the most widely adopted machine learning methods are
          supervised learning which trains algorithms based on
          example input and output data that is labeled by humans, and
          unsupervised learning which provides the algorithm
          with no labeled data in order to allow it to find structure within its
          input data. Let’s explore these methods in more detail.
        

        
          Supervised Learning

          
            In supervised learning, the computer is provided with example inputs
            that are labeled with their desired outputs. The purpose of this
            method is for the algorithm to be able to “learn” by comparing its
            actual output with the “taught” outputs to find errors, and modify
            the model accordingly. Supervised learning therefore uses patterns
            to predict label values on additional unlabeled data.
          

          
            For example, with supervised learning, an algorithm may be fed data
            with images of sharks labeled as fish and images of
            oceans labeled as water. By being trained on this data,
            the supervised learning algorithm should be able to later identify
            unlabeled shark images as fish and unlabeled ocean
            images as water.
          

          
            A common use case of supervised learning is to use historical data
            to predict statistically likely future events. It may use historical
            stock market information to anticipate upcoming fluctuations, or be
            employed to filter out spam emails. In supervised learning, tagged
            photos of dogs can be used as input data to classify untagged photos
            of dogs.
          

        
        
          Unsupervised Learning

          
            In unsupervised learning, data is unlabeled, so the learning
            algorithm is left to find commonalities among its input data. As
            unlabeled data are more abundant than labeled data, machine learning
            methods that facilitate unsupervised learning are particularly
            valuable.
          

          
            The goal of unsupervised learning may be as straightforward as
            discovering hidden patterns within a dataset, but it may also have a
            goal of feature learning, which allows the computational machine to
            automatically discover the representations that are needed to
            classify raw data.
          

          
            Unsupervised learning is commonly used for transactional data. You
            may have a large dataset of customers and their purchases, but as a
            human you will likely not be able to make sense of what similar
            attributes can be drawn from customer profiles and their types of
            purchases. With this data fed into an unsupervised learning
            algorithm, it may be determined that women of a certain age range
            who buy unscented soaps are likely to be pregnant, and therefore a
            marketing campaign related to pregnancy and baby products can be
            targeted to this audience in order to increase their number of
            purchases.
          

          
            Without being told a “correct” answer, unsupervised learning methods
            can look at complex data that is more expansive and seemingly
            unrelated in order to organize it in potentially meaningful ways.
            Unsupervised learning is often used for anomaly detection including
            for fraudulent credit card purchases, and recommender systems that
            recommend what products to buy next. In unsupervised learning,
            untagged photos of dogs can be used as input data for the algorithm
            to find likenesses and classify dog photos together.
          

        
      
      
        Approaches

        
          As a field, machine learning is closely related to computational
          statistics, so having a background knowledge in statistics is useful
          for understanding and leveraging machine learning algorithms.
        

        
          For those who may not have studied statistics, it can be helpful to
          first define correlation and regression, as they are commonly used
          techniques for investigating the relationship among quantitative
          variables. Correlation is a measure of association
          between two variables that are not designated as either dependent or
          independent. Regression at a basic level is used to
          examine the relationship between one dependent and one independent
          variable. Because regression statistics can be used to anticipate the
          dependent variable when the independent variable is known, regression
          enables prediction capabilities.
        

        
          Approaches to machine learning are continuously being developed. For
          our purposes, we’ll go through a few of the popular approaches that
          are being used in machine learning at the time of writing.
        

        
          k-nearest neighbor

          
            The k-nearest neighbor algorithm is a pattern recognition model that
            can be used for classification as well as regression. Often
            abbreviated as k-NN, the k in k-nearest neighbor is
            a positive integer, which is typically small. In either
            classification or regression, the input will consist of the k
            closest training examples within a space.
          

          
            We will focus on k-NN classification. In this method, the output is
            class membership. This will assign a new object to the class most
            common among its k nearest neighbors. In the case of k = 1, the
            object is assigned to the class of the single nearest neighbor.
          

          
            Let’s look at an example of k-nearest neighbor. In the diagram
            below, there are blue diamond objects and orange star objects. These
            belong to two separate classes: the diamond class and the star
            class.
          

          
            [image: k-nearest neighbor initial data set]
            k-nearest neighbor initial data set
          
          
            When a new object is added to the space — in this case a green heart
            — we will want the machine learning algorithm to classify the heart
            to a certain class.
          

          
            [image: k-nearest neighbor data set with new object to classify]
            
              k-nearest neighbor data set with new object to classify
            
          
          
            When we choose k = 3, the algorithm will find the three nearest
            neighbors of the green heart in order to classify it to either the
            diamond class or the star class.
          

          
            In our diagram, the three nearest neighbors of the green heart are
            one diamond and two stars. Therefore, the algorithm will classify
            the heart with the star class.
          

          
            [image: k-nearest neighbor data set with classification complete]
            
              k-nearest neighbor data set with classification complete
            
          
          
            Among the most basic of machine learning algorithms, k-nearest
            neighbor is considered to be a type of “lazy learning” as
            generalization beyond the training data does not occur until a query
            is made to the system.
          

        
        
          Decision Tree Learning

          
            For general use, decision trees are employed to visually represent
            decisions and show or inform decision making. When working with
            machine learning and data mining, decision trees are used as a
            predictive model. These models map observations about data to
            conclusions about the data’s target value.
          

          
            The goal of decision tree learning is to create a model that will
            predict the value of a target based on input variables.
          

          
            In the predictive model, the data’s attributes that are determined
            through observation are represented by the branches, while the
            conclusions about the data’s target value are represented in the
            leaves.
          

          
            When “learning” a tree, the source data is divided into subsets
            based on an attribute value test, which is repeated on each of the
            derived subsets recursively. Once the subset at a node has the
            equivalent value as its target value has, the recursion process will
            be complete.
          

          
            Let’s look at an example of various conditions that can determine
            whether or not someone should go fishing. This includes weather
            conditions as well as barometric pressure conditions.
          

          
            [image: fishing decision tree example]
            fishing decision tree example
          
          
            In the simplified decision tree above, an example is classified by
            sorting it through the tree to the appropriate leaf node. This then
            returns the classification associated with the particular leaf,
            which in this case is either a Yes or a
            No. The tree classifies a day’s conditions based on
            whether or not it is suitable for going fishing.
          

          
            A true classification tree data set would have a lot more features
            than what is outlined above, but relationships should be
            straightforward to determine. When working with decision tree
            learning, several determinations need to be made, including what
            features to choose, what conditions to use for splitting, and
            understanding when the decision tree has reached a clear ending.
          

        
        
          Deep Learning

          
            Deep learning attempts to imitate how the human brain can process
            light and sound stimuli into vision and hearing. A deep learning
            architecture is inspired by biological neural networks and consists
            of multiple layers in an artificial neural network made up of
            hardware and GPUs.
          

          
            Deep learning uses a cascade of nonlinear processing unit layers in
            order to extract or transform features (or representations) of the
            data. The output of one layer serves as the input of the successive
            layer. In deep learning, algorithms can be either supervised and
            serve to classify data, or unsupervised and perform pattern
            analysis.
          

          
            Among the machine learning algorithms that are currently being used
            and developed, deep learning absorbs the most data and has been able
            to beat humans in some cognitive tasks. Because of these attributes,
            deep learning has become the approach with significant potential in
            the artificial intelligence space
          

          
            Computer vision and speech recognition have both realized
            significant advances from deep learning approaches. IBM Watson is a
            well-known example of a system that leverages deep learning.
          

        
      
      
        Human Biases

        
          Although data and computational analysis may make us think that we are
          receiving objective information, this is not the case; being based on
          data does not mean that machine learning outputs are neutral. Human
          bias plays a role in how data is collected, organized, and ultimately
          in the algorithms that determine how machine learning will interact
          with that data.
        

        
          If, for example, people are providing images for “fish” as data to
          train an algorithm, and these people overwhelmingly select images of
          goldfish, a computer may not classify a shark as a fish. This would
          create a bias against sharks as fish, and sharks would not be counted
          as fish.
        

        
          When using historical photographs of scientists as training data, a
          computer may not properly classify scientists who are also people of
          color or women. In fact, recent peer-reviewed research has indicated
          that AI and machine learning programs exhibit human-like biases that
          include race and gender prejudices. See, for example “Semantics derived automatically from language corpora contain
            human-like biases” and “Men Also Like Shopping: Reducing Gender Bias Amplification using
            Corpus-level Constraints” [PDF].
        

        
          As machine learning is increasingly leveraged in business, uncaught
          biases can perpetuate systemic issues that may prevent people from
          qualifying for loans, from being shown ads for high-paying job
          opportunities, or from receiving same-day delivery options.
        

        
          Because human bias can negatively impact others, it is extremely
          important to be aware of it, and to also work towards eliminating it
          as much as possible. One way to work towards achieving this is by
          ensuring that there are diverse people working on a project and that
          diverse people are testing and reviewing it. Others have called for
          regulatory third parties to monitor and audit algorithms,
          building alternative systems that can detect biases, and
          ethics reviews
          as part of data science project planning. Raising awareness about
          biases, being mindful of our own unconscious biases, and structuring
          equity in our machine learning projects and pipelines can work to
          combat bias in this field.
        

      
      
        Conclusion

        
          This tutorial reviewed some of the use cases of machine learning,
          common methods and popular approaches used in the field, suitable
          machine learning programming languages, and also covered some things
          to keep in mind in terms of unconscious biases being replicated in
          algorithms.
        

        
          Because machine learning is a field that is continuously being
          innovated, it is important to keep in mind that algorithms, methods,
          and approaches will continue to change.
        

        
          Currently, Python is one of the most popular programming languages to
          use with machine learning applications in professional fields. Other
          languages you may wish to investigate include Java, R, and C++.
        

      
    
  
    
      
        How To Build a Machine Learning Classifier in Python with Scikit-learn
        Written by Michelle Morales
        Edited by Brian Hogan
      

      
        In this tutorial, you’ll implement a simple machine learning algorithm
        in Python using
        Scikit-learn, a machine
        learning tool for Python. Using a database of breast cancer tumor
        information, you’ll use a
        Naive Bayes (NB)
        classifier that predicts whether or not a tumor is malignant or benign.
      

      
        By the end of this tutorial, you’ll know how to build your very own
        machine learning model in Python.
      

      
        Prerequisites

        
          To complete this tutorial, we’ll use Jupyter Notebooks, which are a
          useful and interactive way to run machine learning experiments. With
          Jupyter Notebooks, you can run short blocks of code and see the
          results quickly, making it easy to test and debug your code.
        

        
          To get up and running quickly, you can open up a web browser and
          navigate to the Try Jupyter website:
          jupyter.org/try. From there,
          click on
          Try Jupyter with Python, and you will be taken to an interactive Jupyter Notebook where you
          can start to write Python code.
        

        
          If you would like to learn more about Jupyter Notebooks and how to set
          up your own Python programming environment to use with Jupyter, you
          can read our tutorial on
          How To Set Up Jupyter Notebook for Python 3.
        

      
      
        Step 1 — Importing Scikit-learn

        
          Let’s begin by installing the Python module
          Scikit-learn, one of the
          best and most documented machine learning libraries for Python.
        

        
          To begin our coding project, let’s activate our Python 3 programming
          environment. Make sure you’re in the directory where your environment
          is located, and run the following command:
        

        
          . my_env/bin/activate

        
        
          With our programming environment activated, check to see if the
          Sckikit-learn module is already installed:
        

        
          (my_env) $ python -c "import sklearn"

        
        
          If sklearn is installed, this command will complete with
          no error. If it is not installed, you will see the following error
          message:
        

        
          
            Output
          
          Traceback (most recent call last): File "<string>", line 1, in <module> ImportError: No module named 'sklearn'

        
        
          The error message indicates that sklearn is not
          installed, so download the library using pip:
        

        
          (my_env) $ pip install scikit-learn[alldeps]

        
        Once the installation completes, launch Jupyter Notebook:

        
          (my_env) $ jupyter notebook

        
        
          In Jupyter, create a new Python Notebook called
          ML Tutorial. In the first cell of the Notebook,
          import
          the sklearn module:
        

        
          
            ML Tutorial
          
          import sklearn

        
        Your notebook should look like the following figure:

        
          [image: Jupyter Notebook with one Python cell, which imports sklearn]
          
            Jupyter Notebook with one Python cell, which imports sklearn
          
        
        
          Now that we have sklearn imported in our notebook, we can
          begin working with the dataset for our machine learning model.
        

      
      
        Step 2 — Importing Scikit-learn’s Dataset

        
          The dataset we will be working with in this tutorial is the
          Breast Cancer Wisconsin Diagnostic Database. The dataset includes various information about breast cancer
          tumors, as well as classification labels of
          malignant or benign. The dataset has
          569 instances, or data, on 569 tumors and includes
          information on 30 attributes, or features, such as the radius
          of the tumor, texture, smoothness, and area.
        

        
          Using this dataset, we will build a machine learning model to use
          tumor information to predict whether or not a tumor is malignant or
          benign.
        

        
          Scikit-learn comes installed with various datasets which we can load
          into Python, and the dataset we want is included. Import and load the
          dataset:
        

        
          
            ML Tutorial
          
          ...
from sklearn.datasets import load_breast_cancer

# Load dataset

data = load_breast_cancer()

        
        
          The data
          variable
          represents a Python object that works like a
          dictionary. The important dictionary keys to consider are the classification
          label names (target_names), the actual labels
          (target), the attribute/feature names
          (feature_names), and the attributes (data).
        

        
          Attributes are a critical part of any classifier. Attributes capture
          important characteristics about the nature of the data. Given the
          label we are trying to predict (malignant versus benign tumor),
          possible useful attributes include the size, radius, and texture of
          the tumor.
        

        
          Create new variables for each important set of information and assign
          the data:
        

        
          
            ML Tutorial
          
          ...
# Organize our data
label_names = data['target_names']
labels = data['target']
feature_names = data['feature_names']
features = data['data']

        
        
          We now have
          lists
          for each set of information. To get a better understanding of our
          dataset, let’s take a look at our data by printing our class labels,
          the first data instance’s label, our feature names, and the feature
          values for the first data instance:
        

        
          
            ML Tutorial
          
          ...
# Look at our data
print(label_names)
print(labels[0])
print(feature_names[0])
print(features[0])

        
        You’ll see the following results if you run the code:

        
          [image: Alt Jupyter Notebook with three Python cells, which prints the first instance in our dataset]
          
            Alt Jupyter Notebook with three Python cells, which prints the first
            instance in our dataset
          
        
        
          As the image shows, our class names are malignant and
          benign, which are then mapped to binary values of
          0 and 1, where 0 represents
          malignant tumors and 1 represents benign tumors.
          Therefore, our first data instance is a malignant tumor whose
          mean radius is 1.79900000e+01.
        

        
          Now that we have our data loaded, we can work with our data to build
          our machine learning classifier.
        

      
      
        Step 3 — Organizing Data into Sets

        
          To evaluate how well a classifier is performing, you should always
          test the model on unseen data. Therefore, before building a model,
          split your data into two parts: a training set and a
          test set.
        

        
          You use the training set to train and evaluate the model during the
          development stage. You then use the trained model to make predictions
          on the unseen test set. This approach gives you a sense of the model’s
          performance and robustness.
        

        
          Fortunately, sklearn has a function called
          train_test_split(), which divides your data into these
          sets. Import the function and then use it to split the data:
        

        
          
            ML Tutorial
          
          ...
from sklearn.model_selection import train_test_split

# Split our data

train, test, train_labels, test_labels = train_test_split(features,
labels,
test_size=0.33,
random_state=42)

        
        
          The function randomly splits the data using the
          test_size parameter. In this example, we now have a test
          set (test) that represents 33% of the original dataset.
          The remaining data (train) then makes up the training
          data. We also have the respective labels for both the train/test
          variables, i.e. train_labels and
          test_labels.
        

        We can now move on to training our first model.

      
      
        Step 4 — Building and Evaluating the Model

        
          There are many models for machine learning, and each model has its own
          strengths and weaknesses. In this tutorial, we will focus on a simple
          algorithm that usually performs well in binary classification tasks,
          namely
          Naive Bayes (NB).
        

        
          First, import the GaussianNB module. Then initialize the
          model with the GaussianNB() function, then train the
          model by fitting it to the data using gnb.fit():
        

        
          
            ML Tutorial
          
          ...
from sklearn.naive_bayes import GaussianNB


# Initialize our classifier
gnb = GaussianNB()

# Train our classifier
model = gnb.fit(train, train_labels)

        
        
          After we train the model, we can then use the trained model to make
          predictions on our test set, which we do using the
          predict() function. The predict() function
          returns an array of predictions for each data instance in the test
          set. We can then print our predictions to get a sense of what the
          model determined.
        

        
          Use the predict() function with the test set
          and print the results:
        

        
          
            ML Tutorial
          
          ...
# Make predictions
preds = gnb.predict(test)
print(preds)

        
        Run the code and you’ll see the following results:

        
          [image: Jupyter Notebook with Python cell that prints the predicted values of the Naive Bayes classifier on our test data]
          
            Jupyter Notebook with Python cell that prints the predicted values
            of the Naive Bayes classifier on our test data
          
        
        
          As you see in the Jupyter Notebook output, the
          predict() function returned an array of 0s
          and 1s which represent our predicted values for the tumor
          class (malignant vs. benign).
        

        
          Now that we have our predictions, let’s evaluate how well our
          classifier is performing.
        

      
      
        Step 5 — Evaluating the Model’s Accuracy

        
          Using the array of true class labels, we can evaluate the accuracy of
          our model’s predicted values by comparing the two arrays (test_labels
          vs. preds). We will use the sklearn function
          accuracy_score() to determine the accuracy of our machine
          learning classifier.
        

        
          
            ML Tutorial
          
          ...
from sklearn.metrics import accuracy_score

# Evaluate accuracy

print(accuracy_score(test_labels, preds))

        
        You’ll see the following results:

        
          [image: Alt Jupyter Notebook with Python cell that prints the accuracy of our NB classifier]
          
            Alt Jupyter Notebook with Python cell that prints the accuracy of
            our NB classifier
          
        
        
          As you see in the output, the NB classifier is 94.15% accurate. This
          means that 94.15 percent of the time the classifier is able to make
          the correct prediction as to whether or not the tumor is malignant or
          benign. These results suggest that our feature set of 30 attributes
          are good indicators of tumor class.
        

        
          You have successfully built your first machine learning classifier.
          Let’s reorganize the code by placing all
          import statements at the top of the Notebook or script.
          The final version of the code should look like this:
        

        
          
            ML Tutorial
          
          from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score


# Load dataset
data = load_breast_cancer()

# Organize our data
label_names = data['target_names']
labels = data['target']
feature_names = data['feature_names']
features = data['data']

# Look at our data
print(label_names)
print('Class label = ', labels[0])
print(feature_names)
print(features[0])

# Split our data
train, test, train_labels, test_labels = train_test_split(features,
                                                          labels,
                                                          test_size=0.33,
                                                          random_state=42)

# Initialize our classifier
gnb = GaussianNB()

# Train our classifier
model = gnb.fit(train, train_labels)

# Make predictions
preds = gnb.predict(test)
print(preds)

# Evaluate accuracy
print(accuracy_score(test_labels, preds))

        
        
          Now you can continue to work with your code to see if you can make
          your classifier perform even better. You could experiment with
          different subsets of features or even try completely different
          algorithms. Check out Scikit-learn’s website at
          scikit-learn.org/stable
          for more machine learning ideas.
        

      
      
        Conclusion

        
          In this tutorial, you learned how to build a machine learning
          classifier in Python. Now you can load data, organize data, train,
          predict, and evaluate machine learning classifiers in Python using
          Scikit-learn. The steps in this tutorial should help you facilitate
          the process of working with your own data in Python.
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        Neural networks are used as a method of deep learning, one of the many
        subfields of artificial intelligence. They were first proposed around 70
        years ago as an attempt at simulating the way the human brain works,
        though in a much more simplified form. Individual ‘neurons’ are
        connected in layers, with weights assigned to determine how the neuron
        responds when signals are propagated through the network. Previously,
        neural networks were limited in the number of neurons they were able to
        simulate, and therefore the complexity of learning they could achieve.
        But in recent years, due to advancements in hardware development, we
        have been able to build very deep networks, and train them on enormous
        datasets to achieve breakthroughs in machine intelligence.
      

      
        These breakthroughs have allowed machines to match and exceed the
        capabilities of humans at performing certain tasks. One such task is
        object recognition. Though machines have historically been unable to
        match human vision, recent advances in deep learning have made it
        possible to build neural networks which can recognize objects, faces,
        text, and even emotions.
      

      
        In this tutorial, you will implement a small subsection of object
        recognition—digit recognition. Using TensorFlow
        (https://www.tensorflow.org/), an open-source Python library developed
        by the Google Brain labs for deep learning research, you will take
        hand-drawn images of the numbers 0-9 and build and train a neural
        network to recognize and predict the correct label for the digit
        displayed.
      

      
        While you won’t need prior experience in practical deep learning or
        TensorFlow to follow along with this tutorial, we’ll assume some
        familiarity with machine learning terms and concepts such as training
        and testing, features and labels, optimization, and evaluation.
      

      
        Prerequisites

        
          To complete this tutorial, you’ll need a local or remote Python 3
          development environment that includes pip for installing Python
          packages, and venv for creating virtual environments.
        

      
      
        Step 1 — Configuring the Project

        
          Before you can develop the recognition program, you’ll need to install
          a few dependencies and create a workspace to hold your files.
        

        
          We’ll use a Python 3 virtual environment to manage our project’s
          dependencies. Create a new directory for your project and navigate to
          the new directory:
        

        
          mkdir tensorflow-demo
cd tensorflow-demo

        
        
          Execute the following commands to set up the virtual environment for
          this tutorial:
        

        
          python3 -m venv tensorflow-demo
source tensorflow-demo/bin/activate

        
        
          Next, install the libraries you’ll use in this tutorial. We’ll use
          specific versions of these libraries by creating a
          requirements.txt file in the project directory which
          specifies the requirement and the version we need. Create the
          requirements.txt file:
        

        
          (tensorflow-demo) $ touch requirements.txt

        
        
          Open the file in your text editor and add the following lines to
          specify the Image, NumPy, and TensorFlow libraries and their versions:
        

        
          
            requirements.txt
          
          image==1.5.20
numpy==1.14.3
tensorflow==1.4.0

        
        
          Save the file and exit the editor. Then install these libraries with
          the following command:
        

        
          (tensorflow-demo) $ pip install -r requirements.txt

        
        
          With the dependencies installed, we can start working on our project.
        

      
      
        Step 2 — Importing the MNIST Dataset

        
          The dataset we will be using in this tutorial is called the
          MNIST dataset, and it
          is a classic in the machine learning community. This dataset is made
          up of images of handwritten digits, 28x28 pixels in size. Here are
          some examples of the digits included in the dataset:
        

        
          [image: Examples of MNIST images]
          Examples of MNIST images
        
        
          Let’s create a Python program to work with this dataset. We will use
          one file for all of our work in this tutorial. Create a new file
          called main.py:
        

        
          (tensorflow-demo) $ touch main.py

        
        
          Now open this file in your text editor of choice and add this line of
          code to the file to import the TensorFlow library:
        

        
          
            main.py
          
          import tensorflow as tf

        
        
          Add the following lines of code to your file to import the MNIST
          dataset and store the image data in the variable mnist:
        

        
          
            main.py
          
          ...
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # y labels are oh-encoded

        
        
          When reading in the data, we are using one-hot-encoding to
          represent the labels (the actual digit drawn, e.g. “3”) of the images.
          One-hot-encoding uses a vector of binary values to represent numeric
          or categorical values. As our labels are for the digits 0-9, the
          vector contains ten values, one for each possible digit. One of these
          values is set to 1, to represent the digit at that index of the
          vector, and the rest are set to 0. For example, the digit 3 is
          represented using the vector
          [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]. As the value at index 3
          is stored as 1, the vector therefore represents the digit 3.
        

        
          To represent the actual images themselves, the 28x28 pixels are
          flattened into a 1D vector which is 784 pixels in size. Each of the
          784 pixels making up the image is stored as a value between 0 and 255.
          This determines the grayscale of the pixel, as our images are
          presented in black and white only. So a black pixel is represented by
          255, and a white pixel by 0, with the various shades of gray somewhere
          in between.
        

        
          We can use the mnist variable to find out the size of the
          dataset we have just imported. Looking at the
          num_examples for each of the three subsets, we can
          determine that the dataset has been split into 55,000 images for
          training, 5000 for validation, and 10,000 for testing. Add the
          following lines to your file:
        

        
          
            main.py
          
          ...
n_train = mnist.train.num_examples  # 55,000
n_validation = mnist.validation.num_examples  # 5000
n_test = mnist.test.num_examples  # 10,000

        
        
          Now that we have our data imported, it’s time to think about the
          neural network.
        

      
      
        Step 3 — Defining the Neural Network Architecture

        
          The architecture of the neural network refers to elements such as the
          number of layers in the network, the number of units in each layer,
          and how the units are connected between layers. As neural networks are
          loosely inspired by the workings of the human brain, here the term
          unit is used to represent what we would biologically think of as a
          neuron. Like neurons passing signals around the brain, units take some
          values from previous units as input, perform a computation, and then
          pass on the new value as output to other units. These units are
          layered to form the network, starting at a minimum with one layer for
          inputting values, and one layer to output values. The term
          hidden layer is used for all of the layers in between the
          input and output layers, i.e. those “hidden” from the real world.
        

        
          Different architectures can yield dramatically different results, as
          the performance can be thought of as a function of the architecture
          among other things, such as the parameters, the data, and the duration
          of training.
        

        
          Add the following lines of code to your file to store the number of
          units per layer in global variables. This allows us to alter the
          network architecture in one place, and at the end of the tutorial you
          can test for yourself how different numbers of layers and units will
          impact the results of our model:
        

        
          
            main.py
          
          ...
n_input = 784  # input layer (28x28 pixels)
n_hidden1 = 512  # 1st hidden layer
n_hidden2 = 256  # 2nd hidden layer
n_hidden3 = 128  # 3rd hidden layer
n_output = 10  # output layer (0-9 digits)

        
        
          The following diagram shows a visualization of the architecture we’ve
          designed, with each layer fully connected to the surrounding layers:
        

        
          [image: Diagram of a neural network]
          Diagram of a neural network
        
        
          The term “deep neural network” relates to the number of hidden layers,
          with “shallow” usually meaning just one hidden layer, and “deep”
          referring to multiple hidden layers. Given enough training data, a
          shallow neural network with a sufficient number of units should
          theoretically be able to represent any function that a deep neural
          network can. But it is often more computationally efficient to use a
          smaller deep neural network to achieve the same task that would
          require a shallow network with exponentially more hidden units.
          Shallow neural networks also often encounter overfitting, where the
          network essentially memorizes the training data that it has seen, and
          is not able to generalize the knowledge to new data. This is why deep
          neural networks are more commonly used: the multiple layers between
          the raw input data and the output label allow the network to learn
          features at various levels of abstraction, making the network itself
          better able to generalize.
        

        
          Other elements of the neural network that need to be defined here are
          the hyperparameters. Unlike the parameters that will get updated
          during training, these values are set initially and remain constant
          throughout the process. In your file, set the following variables and
          values:
        

        
          
            main.py
          
          ...
learning_rate = 1e-4
n_iterations = 1000
batch_size = 128
dropout = 0.5

        
        
          The learning rate represents how much the parameters will adjust at
          each step of the learning process. These adjustments are a key
          component of training: after each pass through the network we tune the
          weights slightly to try and reduce the loss. Larger learning rates can
          converge faster, but also have the potential to overshoot the optimal
          values as they are updated. The number of iterations refers to how
          many times we go through the training step, and the batch size refers
          to how many training examples we are using at each step. The
          dropout variable represents a threshold at which we
          eliminate some units at random. We will be using
          dropout in our final hidden layer to give each unit a 50%
          chance of being eliminated at every training step. This helps prevent
          overfitting.
        

        
          We have now defined the architecture of our neural network, and the
          hyperparameters that impact the learning process. The next step is to
          build the network as a TensorFlow graph.
        

      
      
        Step 4 — Building the TensorFlow Graph

        
          To build our network, we will set up the network as a computational
          graph for TensorFlow to execute. The core concept of TensorFlow is the
          tensor, a data structure similar to an array or list.
          initialized, manipulated as they are passed through the graph, and
          updated through the learning process.
        

        
          We’ll start by defining three tensors as placeholders, which
          are tensors that we’ll feed values into later. Add the following to
          your file:
        

        
          
            main.py
          
          ...
X = tf.placeholder("float", [None, n_input])
Y = tf.placeholder("float", [None, n_output])
keep_prob = tf.placeholder(tf.float32)

        
        
          The only parameter that needs to be specified at its declaration is
          the size of the data we will be feeding in. For X we use
          a shape of [None, 784], where
          None represents any amount, as we will be feeding in an
          undefined number of 784-pixel images. The shape of Y is
          [None, 10] as we will be using it for an undefined number
          of label outputs, with 10 possible classes. The
          keep_prob tensor is used to control the dropout rate, and
          we initialize it as a placeholder rather than an immutable variable
          because we want to use the same tensor both for training (when
          dropout is set to 0.5) and testing (when
          dropout is set to 1.0).
        

        
          The parameters that the network will update in the training process
          are the weight and bias values, so for these
          we need to set an initial value rather than an empty placeholder.
          These values are essentially where the network does its learning, as
          they are used in the activation functions of the neurons, representing
          the strength of the connections between units.
        

        
          Since the values are optimized during training, we could set them to
          zero for now. But the initial value actually has a significant impact
          on the final accuracy of the model. We’ll use random values from a
          truncated normal distribution for the weights. We want them to be
          close to zero, so they can adjust in either a positive or negative
          direction, and slightly different, so they generate different errors.
          This will ensure that the model learns something useful. Add these
          lines:
        

        
          
            main.py
          
          ...
weights = {
    'w1': tf.Variable(tf.truncated_normal([n_input, n_hidden1], stddev=0.1)),
    'w2': tf.Variable(tf.truncated_normal([n_hidden1, n_hidden2], stddev=0.1)),
    'w3': tf.Variable(tf.truncated_normal([n_hidden2, n_hidden3], stddev=0.1)),
    'out': tf.Variable(tf.truncated_normal([n_hidden3, n_output], stddev=0.1)),
}

        
        
          For the bias, we use a small constant value to ensure that the tensors
          activate in the intial stages and therefore contribute to the
          propagation. The weights and bias tensors are stored in dictionary
          objects for ease of access. Add this code to your file to define the
          biases:
        

        
          
            main.py
          
          ...
biases = {
    'b1': tf.Variable(tf.constant(0.1, shape=[n_hidden1])),
    'b2': tf.Variable(tf.constant(0.1, shape=[n_hidden2])),
    'b3': tf.Variable(tf.constant(0.1, shape=[n_hidden3])),
    'out': tf.Variable(tf.constant(0.1, shape=[n_output]))
}

        
        
          Next, set up the layers of the network by defining the operations that
          will manipulate the tensors. Add these lines to your file:
        

        
          
            main.py
          
          ...
layer_1 = tf.add(tf.matmul(X, weights['w1']), biases['b1'])
layer_2 = tf.add(tf.matmul(layer_1, weights['w2']), biases['b2'])
layer_3 = tf.add(tf.matmul(layer_2, weights['w3']), biases['b3'])
layer_drop = tf.nn.dropout(layer_3, keep_prob)
output_layer = tf.matmul(layer_3, weights['out']) + biases['out']

        
        
          Each hidden layer will execute matrix multiplication on the previous
          layer’s outputs and the current layer’s weights, and add the bias to
          these values. At the last hidden layer, we will apply a dropout
          operation using our keep_prob value of 0.5.
        

        
          The final step in building the graph is to define the loss function
          that we want to optimize. A popular choice of loss function in
          TensorFlow programs is cross-entropy, also known as
          log-loss, which quantifies the difference between two
          probability distributions (the predictions and the labels). A perfect
          classification would result in a cross-entropy of 0, with the loss
          completely minimized.
        

        
          We also need to choose the optimization algorithm which will be used
          to minimize the loss function. A process named
          gradient descent optimization is a common method for finding
          the (local) minimum of a function by taking iterative steps along the
          gradient in a negative (descending) direction. There are several
          choices of gradient descent optimization algorithms already
          implemented in TensorFlow, and in this tutorial we will be using the
          Adam optimizer. This extends upon gradient descent optimization by using momentum
          to speed up the process through computing an exponentially weighted
          average of the gradients and using that in the adjustments. Add the
          following code to your file:
        

        
          
            main.py
          
          ...
cross_entropy = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(
        labels=Y, logits=output_layer
        ))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

        
        
          We’ve now defined the network and built it out with TensorFlow. The
          next step is to feed data through the graph to train it, and then test
          that it has actually learnt something.
        

      
      
        Step 5 — Training and Testing

        
          The training process involves feeding the training dataset through the
          graph and optimizing the loss function. Every time the network
          iterates through a batch of more training images, it updates the
          parameters to reduce the loss in order to more accurately predict the
          digits shown. The testing process involves running our testing dataset
          through the trained graph, and keeping track of the number of images
          that are correctly predicted, so that we can calculate the accuracy.
        

        
          Before starting the training process, we will define our method of
          evaluating the accuracy so we can print it out on mini-batches of data
          while we train. These printed statements will allow us to check that
          from the first iteration to the last, loss decreases and accuracy
          increases; they will also allow us to track whether or not we have ran
          enough iterations to reach a consistent and optimal result:
        

        
          
            main.py
          
          ...
correct_pred = tf.equal(tf.argmax(output_layer, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

        
        
          In correct_pred, we use the arg_max function
          to compare which images are being predicted correctly by looking at
          the output_layer (predictions) and
          Y (labels), and we use the equal function to
          return this as a list of
          Booleans. We can then cast this list to floats and calculate the mean to get
          a total accuracy score.
        

        
          We are now ready to initialize a session for running the graph. In
          this session we will feed the network with our training examples, and
          once trained, we feed the same graph with new test examples to
          determine the accuracy of the model. Add the following lines of code
          to your file:
        

        
          
            main.py
          
          ...
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

        
        
          The essence of the training process in deep learning is to optimize
          the loss function. Here we are aiming to minimize the difference
          between the predicted labels of the images, and the true labels of the
          images. The process involves four steps which are repeated for a set
          number of iterations:
        

        
          	Propagate values forward through the network

          	Compute the loss

          	Propagate values backward through the network

          	Update the parameters

        

        
          At each training step, the parameters are adjusted slightly to try and
          reduce the loss for the next step. As the learning progresses, we
          should see a reduction in loss, and eventually we can stop training
          and use the network as a model for testing our new data.
        

        Add this code to the file:

        
          
            main.py
          
          ...
# train on mini batches
for i in range(n_iterations):
    batch_x, batch_y = mnist.train.next_batch(batch_size)
    sess.run(train_step, feed_dict={
        X: batch_x, Y: batch_y, keep_prob: dropout
        })

    # print loss and accuracy (per minibatch)
    if i % 100 == 0:
        minibatch_loss, minibatch_accuracy = sess.run(
            [cross_entropy, accuracy],
            feed_dict={X: batch_x, Y: batch_y, keep_prob: 1.0}
            )
        print(
            "Iteration",
            str(i),
            "\t| Loss =",
            str(minibatch_loss),
            "\t| Accuracy =",
            str(minibatch_accuracy)
            )

        
        
          After 100 iterations of each training step in which we feed a
          mini-batch of images through the network, we print out the loss and
          accuracy of that batch. Note that we should not be expecting a
          decreasing loss and increasing accuracy here, as the values are per
          batch, not for the entire model. We use mini-batches of images rather
          than feeding them through individually to speed up the training
          process and allow the network to see a number of different examples
          before updating the parameters.
        

        
          Once the training is complete, we can run the session on the test
          images. This time we are using a keep_prob dropout rate
          of 1.0 to ensure all units are active in the testing
          process.
        

        Add this code to the file:

        
          
            main.py
          
          ...
test_accuracy = sess.run(accuracy, feed_dict={X: mnist.test.images, Y: mnist.test.labels, keep_prob: 1.0})
print("\nAccuracy on test set:", test_accuracy)

        
        
          It’s now time to run our program and see how accurately our neural
          network can recognize these handwritten digits. Save the
          main.py file and execute the following command in the
          terminal to run the script:
        

        
          (tensorflow-demo) $ python main.py

        
        
          You’ll see an output similar to the following, although individual
          loss and accuracy results may vary slightly:
        

        
          
            Output
          
          Iteration 0     | Loss = 3.67079    | Accuracy = 0.140625
Iteration 100   | Loss = 0.492122   | Accuracy = 0.84375
Iteration 200   | Loss = 0.421595   | Accuracy = 0.882812
Iteration 300   | Loss = 0.307726   | Accuracy = 0.921875
Iteration 400   | Loss = 0.392948   | Accuracy = 0.882812
Iteration 500   | Loss = 0.371461   | Accuracy = 0.90625
Iteration 600   | Loss = 0.378425   | Accuracy = 0.882812
Iteration 700   | Loss = 0.338605   | Accuracy = 0.914062
Iteration 800   | Loss = 0.379697   | Accuracy = 0.875
Iteration 900   | Loss = 0.444303   | Accuracy = 0.90625

Accuracy on test set: 0.9206

        
        
          To try and improve the accuracy of our model, or to learn more about
          the impact of tuning hyperparameters, we can test the effect of
          changing the learning rate, the dropout threshold, the batch size, and
          the number of iterations. We can also change the number of units in
          our hidden layers, and change the amount of hidden layers themselves,
          to see how different architectures increase or decrease the model
          accuracy.
        

        
          To demonstrate that the network is actually recognizing the hand-drawn
          images, let’s test it on a single image of our own.
        

        
          If you are on a local machine and you would like to use your own
          hand-drawn number, you can use a graphics editor to create your own
          28x28 pixel image of a digit. Otherwise, you can use
          curl to download the following sample test image to your
          server or computer:
        

        
          (tensorflow-demo) $ curl -O images/test_img.png

        
        
          Open the main.py file in your editor and add the
          following lines of code to the top of the file to import two libraries
          necessary for image manipulation.
        

        
          
            main.py
          
          import numpy as np
from PIL import Image
...

        
        
          Then at the end of the file, add the following line of code to load
          the test image of the handwritten digit:
        

        
          
            main.py
          
          ...
img = np.invert(Image.open("test_img.png").convert('L')).ravel()

        
        
          The open function of the Image library loads
          the test image as a 4D array containing the three RGB color channels
          and the Alpha transparency. This is not the same representation we
          used previously when reading in the dataset with TensorFlow, so we’ll
          need to do some extra work to match the format.
        

        
          First, we use the convert function with the
          L parameter to reduce the 4D RGBA representation to one
          grayscale color channel. We store this as a numpy array
          and invert it using np.invert, because the current matrix
          represents black as 0 and white as 255, whereas we need the opposite.
          Finally, we call ravel to flatten the array.
        

        
          Now that the image data is structured correctly, we can run a session
          in the same way as previously, but this time only feeding in the
          single image for testing.
        

        
          Add the following code to your file to test the image and print the
          outputted label.
        

        
          
            main.py
          
          ...
prediction = sess.run(tf.argmax(output_layer, 1), feed_dict={X: [img]})
print ("Prediction for test image:", np.squeeze(prediction))

        
        
          The np.squeeze function is called on the prediction to
          return the single integer from the array (i.e. to go from [2] to 2).
          The resulting output demonstrates that the network has recognized this
          image as the digit 2.
        

        
          
            Output
          
          Prediction for test image: 2

        
        
          You can try testing the network with more complex images –– digits
          that look like other digits, for example, or digits that have been
          drawn poorly or incorrectly –– to see how well it fares.
        

      
      
        Conclusion

        
          In this tutorial you successfully trained a neural network to classify
          the MNIST dataset with around 92% accuracy and tested it on an image
          of your own. Current state-of-the-art research achieves around 99% on
          this same problem, using more complex network architectures involving
          convolutional layers. These use the 2D structure of the image to
          better represent the contents, unlike our method which flattened all
          the pixels into one vector of 784 units. You can read more about this
          topic on the
          TensorFlow website, and see the research papers detailing the most accurate results on
          the MNIST website.
        

        
          Now that you know how to build and train a neural network, you can try
          and use this implementation on your own data, or test it on other
          popular datasets such as the
          Google StreetView House Numbers, or the
          CIFAR-10
          dataset for more general image recognition.
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        Reinforcement learning is a subfield within control theory, which
        concerns controlling systems that change over time and broadly includes
        applications such as self-driving cars, robotics, and bots for games.
        Throughout this guide, you will use reinforcement learning to build a
        bot for Atari video games. This bot is not given access to internal
        information about the game. Instead, it’s only given access to the
        game’s rendered display and the reward for that display, meaning that it
        can only see what a human player would see.
      

      
        In machine learning, a bot is formally known as an agent. In
        the case of this tutorial, an agent is a “player” in the system that
        acts according to a decision-making function, called a policy.
        The primary goal is to develop strong agents by arming them with strong
        policies. In other words, our aim is to develop intelligent bots by
        arming them with strong decision-making capabilities.
      

      
        You will begin this tutorial by training a basic reinforcement learning
        agent that takes random actions when playing Space Invaders, the classic
        Atari arcade game, which will serve as your baseline for comparison.
        Following this, you will explore several other techniques — including
        Q-learning, deep Q-learning, and least squares — while building agents
        that play Space Invaders and Frozen Lake, a simple game environment
        included in Gym (https://gym.openai.com/), a reinforcement learning
        toolkit released by OpenAI (https://openai.com/). By following this
        tutorial, you will gain an understanding of the fundamental concepts
        that govern one’s choice of model complexity in machine learning.
      

      
        Prerequisites

        To complete this tutorial, you will need:

        
          	
            A server running Ubuntu 18.04, with at least 1GB of RAM. This server
            should have a non-root user with sudo privileges
            configured, as well as a firewall set up with UFW. You can set this
            up by following this
            Initial Server Setup Guide for Ubuntu 18.04.
          

          	
            A Python 3 virtual environment which you can achieve by reading our
            guide “How To Install Python 3 and Set Up a Programming Environment on
              an Ubuntu 18.04 Server.”
          

        

        
          Alternatively, if you are using a local machine, you can install
          Python 3 and set up a local programming environment by reading the
          appropriate tutorial for your operating system via our
          Python Installation and Setup Series.
        

      
      
        Step 1 — Creating the Project and Installing Dependencies

        
          In order to set up the development environment for your bots, you must
          download the game itself and the libraries needed for computation.
        

        
          Begin by creating a workspace for this project named
          AtariBot:
        

        
          mkdir ~/AtariBot

        
        Navigate to the new AtariBot directory:

        
          cd ~/AtariBot

        
        
          Then create a new virtual environment for the project. You can name
          this virtual environment anything you’d like; here, we will name it
          ataribot:
        

        
          python3 -m venv ataribot

        
        Activate your environment:

        
          source ataribot/bin/activate

        
        
          On Ubuntu, as of version 16.04, OpenCV requires a few more packages to
          be installed in order to function. These include CMake — an
          application that manages software build processes — as well as a
          session manager, miscellaneous extensions, and digital image
          composition. Run the following command to install these packages:
        

        
          sudo apt-get install -y cmake libsm6 libxext6 libxrender-dev libz-dev

        
        
          
            NOTE: If you’re following this guide on a local
            machine running MacOS, the only additional software you need to
            install is CMake. Install it using Homebrew (which you will have
            installed if you followed the
            prerequisite MacOS tutorial) by typing:
          

          
            brew install cmake

          
        

        
          Next, use pip to install the wheel package,
          the reference implementation of the wheel packaging standard. A Python
          library, this package serves as an extension for building wheels and
          includes a command line tool for working with .whl files:
        

        
          python -m pip install wheel

        
        
          In addition to wheel, you’ll need to install the
          following packages:
        

        
          	
            Gym, a Python library that makes various games available for research,
            as well as all dependencies for the Atari games. Developed by
            OpenAI, Gym offers public
            benchmarks for each of the games so that the performance for various
            agents and algorithms can be uniformly /evaluated.
          

          	
            Tensorflow, a deep learning library. This library gives us the ability to run
            computations more efficiently. Specifically, it does this by
            building mathematical functions using Tensorflow’s abstractions that
            run exclusively on your GPU.
          

          	
            OpenCV, the computer vision library mentioned previously.
          

          	
            SciPy, a scientific computing library that offers efficient optimization
            algorithms.
          

          	
            NumPy, a linear algebra library.
          

        

        
          Install each of these packages with the following command. Note that
          this command specifies which version of each package to install:
        

        
          python -m pip install gym==0.9.5 tensorflow==1.5.0 tensorpack==0.8.0 numpy==1.14.0 scipy==1.1.0 opencv-python==3.4.1.15

        
        
          Following this, use pip once more to install Gym’s Atari
          environments, which includes a variety of Atari video games, including
          Space Invaders:
        

        
          python -m pip install gym[atari]

        
        
          If your installation of the gym[atari] package was
          successful, your output will end with the following:
        

        
          
            Output
          
          Installing collected packages: atari-py, Pillow, PyOpenGL
Successfully installed Pillow-5.4.1 PyOpenGL-3.1.0 atari-py-0.1.7

        
        
          With these dependencies installed, you’re ready to move on and build
          an agent that plays randomly to serve as your baseline for comparison.
        

      
      
        Step 2 — Creating a Baseline Random Agent with Gym

        
          Now that the required software is on your server, you will set up an
          agent that will play a simplified version of the classic Atari game,
          Space Invaders. For any experiment, it is necessary to obtain a
          baseline to help you understand how well your model performs. Because
          this agent takes random actions at each frame, we’ll refer to it as
          our random, baseline agent. In this case, you will compare against
          this baseline agent to understand how well your agents perform in
          later steps.
        

        
          With Gym, you maintain your own game loop. This means that
          you handle every step of the game’s execution: at every time step, you
          give the gym a new action and ask gym for
          the game state. In this tutorial, the game state is the
          game’s appearance at a given time step, and is precisely what you
          would see if you were playing the game.
        

        
          Using your preferred text editor, create a Python file named
          bot_2_random.py. Here, we’ll use nano:
        

        
          nano bot_2_random.py

        
        
          
            Note: Throughout this guide, the bots’ names are
            aligned with the Step number in which they appear, rather than the
            order in which they appear. Hence, this bot is named
            bot\_2\_random.py rather than
            bot\_1\_random.py.
          

        

        
          Start this script by adding the following highlighted lines. These
          lines include a comment block that explains what this script will do
          and two import statements that will import the packages
          this script will ultimately need in order to function:
        

        
          
            /AtariBot/bot_2_random.py
          
          """
Bot 2 -- Make a random, baseline agent for the SpaceInvaders game.
"""

import gym
import random

        
        
          Add a main function. In this function, create the game
          environment — SpaceInvaders-v0 — and then initialize the
          game using env.reset:
        

        
          
            /AtariBot/bot_2_random.py
          
          . . .
import gym
import random

def main():
env = gym.make('SpaceInvaders-v0')
env.reset()

        
        
          Next, add an env.step function. This function can return
          the following kinds of values:
        

        
          	
            state: The new state of the game, after applying the
            provided action.
          

          	
            reward: The increase in score that the state incurs. By
            way of example, this could be when a bullet has destroyed an alien,
            and the score increases by 50 points. Then,
            reward = 50. In playing any score-based game, the
            player’s goal is to maximize the score. This is synonymous with
            maximizing the total reward.
          

          	
            done: Whether or not the episode has ended, which
            usually occurs when a player has lost all lives.
          

          	
            info: Extraneous information that you’ll put aside for
            now.
          

        

        
          You will use reward to count your total reward. You’ll
          also use done to determine when the player dies, which
          will be when done returns True.
        

        
          Add the following game loop, which instructs the game to loop until
          the player dies:
        

        
          
            /AtariBot/bot_2_random.py
          
          . . .
def main():
env = gym.make('SpaceInvaders-v0')
env.reset()

    episode_reward = 0
    while True:
        action = env.action_space.sample()
        _, reward, done, _ = env.step(action)
        episode_reward += reward
        if done:
            print('Reward: %s' % episode_reward)
            break

        
        
          Finally, run the main function. Include a
          __name__ check to ensure that main only runs
          when you invoke it directly with python bot_2_random.py.
          If you do not add the if check, main will
          always be triggered when the Python file is executed,
          even when you import the file. Consequently, it’s a
          good practice to place the code in a main function,
          executed only when __name__ == '__main__'.
        

        
          
            /AtariBot/bot_2_random.py
          
          . . .
def main():
. . .
if done:
print('Reward %s' % episode_reward)
break

if **name** == '**main**':
main()

        
        
          Save the file and exit the editor. If you’re using nano,
          do so by pressing CTRL+X, Y, then
          ENTER. Then, run your script by typing:
        

        
          python bot_2_random.py

        
        
          Your program will output a number, akin to the following. Note that
          each time you run the file you will get a different result:
        

        
          
            Output
          
          Making new env: SpaceInvaders-v0
Reward: 210.0

        
        
          These random results present an issue. In order to produce work that
          other researchers and practitioners can benefit from, your results and
          trials must be reproducible. To correct this, reopen the script file:
        

        
          nano bot_2_random.py

        
        
          After import random, add random.seed(0).
          After env = gym.make('SpaceInvaders-v0'), add
          env.seed(0). Together, these lines “seed” the environment
          with a consistent starting point, ensuring that the results will
          always be reproducible. Your final file will match the following,
          exactly:
        

        
          
            /AtariBot/bot_2_random.py
          
          """
Bot 2 -- Make a random, baseline agent for the SpaceInvaders game.
"""

import gym
import random

random.seed(0)

def main():
env = gym.make('SpaceInvaders-v0')
env.seed(0)

    env.reset()
    episode_reward = 0
    while True:
        action = env.action_space.sample()
        _, reward, done, _ = env.step(action)
        episode_reward += reward
        if done:
            print('Reward: %s' % episode_reward)
            break

if **name** == '**main**':
main()

        
        
          Save the file and close your editor, then run the script by typing the
          following in your terminal:
        

        
          python bot_2_random.py

        
        This will output the following reward, exactly:

        
          
            Output
          
          Making new env: SpaceInvaders-v0
Reward: 555.0

        
        
          This is your very first bot, although it’s rather unintelligent since
          it doesn’t account for the surrounding environment when it makes
          decisions. For a more reliable estimate of your bot’s performance, you
          could have the agent run for multiple episodes at a time, reporting
          rewards averaged across multiple episodes. To configure this, first
          reopen the file:
        

        
          nano bot_2_random.py

        
        
          After random.seed(0), add the following highlighted line
          which tells the agent to play the game for 10 episodes:
        

        
          
            /AtariBot/bot_2_random.py
          
          . . .
random.seed(0)

num_episodes = 10
. . .

        
        
          Right after env.seed(0), start a new list of rewards:
        

        
          
            /AtariBot/bot_2_random.py
          
          . . .
env.seed(0)
rewards = []
. . .

        
        
          Nest all code from env.reset() to the end of
          main() in a for loop, iterating
          num_episodes times. Make sure to indent each line from
          env.reset() to break by four spaces:
        

        
          
            /AtariBot/bot_2_random.py
          
          . . .
def main():
env = gym.make('SpaceInvaders-v0')
env.seed(0)
rewards = []

    for _ in range(num_episodes):
        env.reset()
        episode_reward = 0

        while True:
            ...

        
        
          Right before break, currently the last line of the main
          game loop, add the current episode’s reward to the list of all
          rewards:
        

        
          
            /AtariBot/bot_2_random.py
          
          . . .
if done:
print('Reward: %s' % episode_reward)
rewards.append(episode_reward)
break
. . .

        
        
          At the end of the main function, report the average
          reward:
        

        
          
            /AtariBot/bot_2_random.py
          
          . . .
def main():
...
print('Reward: %s' % episode_reward)
break
print('Average reward: %.2f' % (sum(rewards) / len(rewards)))
. . .

        
        
          Your file will now align with the following. Please note that the
          following code block includes a few comments to clarify key parts of
          the script:
        

        
          
            /AtariBot/bot_2_random.py
          
          """
Bot 2 -- Make a random, baseline agent for the SpaceInvaders game.
"""

import gym
import random

random.seed(0)  # make results reproducible

num_episodes = 10


def main():
    env = gym.make('SpaceInvaders-v0')  # create the game
    env.seed(0)  # make results reproducible
    rewards = []

    for _ in range(num_episodes):
        env.reset()
        episode_reward = 0
        while True:
            action = env.action_space.sample()
            _, reward, done, _ = env.step(action)  # random action
            episode_reward += reward
            if done:
                print('Reward: %d' % episode_reward)
                rewards.append(episode_reward)
                break
    print('Average reward: %.2f' % (sum(rewards) / len(rewards)))


if __name__ == '__main__':
    main()

        
        Save the file, exit the editor, and run the script:

        
          python bot_2_random.py

        
        This will print the following average reward, exactly:

        
          
            Output
          
          Making new env: SpaceInvaders-v0
. . .
Average reward: 163.50

        
        
          We now have a more reliable estimate of the baseline score to beat. To
          create a superior agent, though, you will need to understand the
          framework for reinforcement learning. How can one make the abstract
          notion of “decision-making” more concrete?
        

      
      
        Understanding Reinforcement Learning

        
          In any game, the player’s goal is to maximize their score. In this
          guide, the player’s score is referred to as its reward. To
          maximize their reward, the player must be able to refine its
          decision-making abilities. Formally, a decision is the process of
          looking at the game, or observing the game’s state, and picking an
          action. Our decision-making function is called a policy; a
          policy accepts a state as input and “decides” on an action:
        

        
          policy: state -> action

        
        
          To build such a function, we will start with a specific set of
          algorithms in reinforcement learning called
          Q-learning algorithms. To illustrate these, consider the
          initial state of a game, which we’ll call state0: your
          spaceship and the aliens are all in their starting positions. Then,
          assume we have access to a magical “Q-table” which tells us how much
          reward each action will earn:
        

        
          
            
              	state
              	action
              	reward
            

          
          
            
              	state0
              	shoot
              	10
            

            
              	state0
              	right
              	3
            

            
              	state0
              	left
              	3
            

          
        

        
          The shoot action will maximize your reward, as it results
          in the reward with the highest value: 10. As you can see, a Q-table
          provides a straightforward way to make decisions, based on the
          observed state:
        

        
          policy: state -> look at Q-table, pick action with greatest reward

        
        
          However, most games have too many states to list in a table. In such
          cases, the Q-learning agent learns a Q-function instead of a
          Q-table. We use this Q-function similarly to how we used the Q-table
          previously. Rewriting the table entries as functions gives us the
          following:
        

        
          Q(state0, shoot) = 10
Q(state0, right) = 3
Q(state0, left) = 3

        
        
          Given a particular state, it’s easy for us to make a decision: we
          simply look at each possible action and its reward, then take the
          action that corresponds with the highest expected reward.
          Reformulating the earlier policy more formally, we have:
        

        
          policy: state -> argmax_{action} Q(state, action)

        
        
          This satisfies the requirements of a decision-making function: given a
          state in the game, it decides on an action. However, this solution
          depends on knowing Q(state, action) for every state and
          action. To estimate Q(state, action), consider the
          following:
        

        
          	
            Given many observations of an agent’s states, actions, and rewards,
            one can obtain an estimate of the reward for every state and action
            by taking a running average.
          

          	
            Space Invaders is a game with delayed rewards: the player is
            rewarded when the alien is blown up and not when the player shoots.
            However, the player taking an action by shooting is the true impetus
            for the reward. Somehow, the Q-function must assign
            (state0, shoot) a positive reward.
          

        

        These two insights are codified in the following equations:

        
          Q(state, action) = (1 - learning_rate) * Q(state, action) + learning_rate * Q_target
Q_target = reward + discount_factor * max_{action'} Q(state', action')

        
        These equations use the following definitions:

        
          	state: the state at current time step

          	action: the action taken at current time step

          	reward: the reward for current time step

          	
            state': the new state for next time step, given that we
            took action a
          

          	action': all possible actions

          	learning_rate: the learning rate

          	
            discount_factor: the discount factor, how much reward
            “degrades” as we propagate it
          

        

        
          For a complete explanation of these two equations, see this article on
          Understanding Q-Learning.
        

        
          With this understanding of reinforcement learning in mind, all that
          remains is to actually run the game and obtain these Q-value estimates
          for a new policy.
        

      
      
        Step 3 — Creating a Simple Q-learning Agent for Frozen Lake

        
          Now that you have a baseline agent, you can begin creating new agents
          and compare them against the original. In this step, you will create
          an agent that uses
          Q-learning, a
          reinforcement learning technique used to teach an agent which action
          to take given a certain state. This agent will play a new game,
          FrozenLake.
          The setup for this game is described as follows on the Gym website:
        

        
          
            Winter is here. You and your friends were tossing around a frisbee
            at the park when you made a wild throw that left the frisbee out in
            the middle of the lake. The water is mostly frozen, but there are a
            few holes where the ice has melted. If you step into one of those
            holes, you’ll fall into the freezing water. At this time, there’s an
            international frisbee shortage, so it’s absolutely imperative that
            you navigate across the lake and retrieve the disc. However, the ice
            is slippery, so you won’t always move in the direction you intend.
          

        

        
          The surface is described using a grid like the following:

        

        
          SFFF       (S: starting point, safe)
FHFH       (F: frozen surface, safe)
FFFH       (H: hole, fall to your doom)
HFFG       (G: goal, where the frisbee is located)

        
        
          The player starts at the top left, denoted by S, and
          works its way to the goal at the bottom right, denoted by
          G. The available actions are right,
          left, up, and down,
          and reaching the goal results in a score of 1. There are a number of
          holes, denoted H, and falling into one immediately
          results in a score of 0.
        

        
          In this section, you will implement a simple Q-learning agent. Using
          what you’ve learned previously, you will create an agent that trades
          off between exploration and exploitation. In this
          context, exploration means the agent acts randomly, and exploitation
          means it uses its Q-values to choose what it believes to be the
          optimal action. You will also create a table to hold the Q-values,
          updating it incrementally as the agent acts and learns.
        

        Make a copy of your script from Step 2:

        
          cp bot_2_random.py bot_3_q_table.py

        
        Then open up this new file for editing:

        
          nano bot_3_q_table.py

        
        
          Begin by updating the comment at the top of the file that describes
          the script’s purpose. Because this is only a comment, this change
          isn’t necessary for the script to function properly, but it can be
          helpful for keeping track of what the script does:
        

        
          
            /AtariBot/bot_3_q_table.py
          
          """
Bot 3 -- Build simple q-learning agent for FrozenLake
"""
. . .

        
        
          Before you make functional modifications to the script, you will need
          to import numpy for its linear algebra utilities. Right
          underneath import gym, add the highlighted line:
        

        
          
            /AtariBot/bot_3_q_table.py
          
          """
Bot 3 -- Build simple q-learning agent for FrozenLake
"""

import gym
import numpy as np
import random

random.seed(0) # make results reproducible
. . .

        
        
          Underneath random.seed(0), add a seed for
          numpy:
        

        
          
            /AtariBot/bot_3_q_table.py
          
          . . .
import random

random.seed(0) # make results reproducible
np.random.seed(0)
. . .

        
        
          Next, make the game states accessible. Update the
          env.reset() line to say the following, which stores the
          initial state of the game in the variable state:
        

        
          
            /AtariBot/bot_3_q_table.py
          
          . . .
for \_ in range(num_episodes):
state = env.reset()
. . .

        
        
          Update the env.step(...) line to say the following, which
          stores the next state, state2. You will need both the
          current state and the next one — state2 — to
          update the Q-function.
        

        
          
            /AtariBot/bot_3_q_table.py
          
                  . . .
        while True:
            action = env.action_space.sample()
            state2, reward, done, _ = env.step(action)
            . . .

        
        
          After episode_reward += reward, add a line updating the
          variable state. This keeps the variable
          state updated for the next iteration, as you will expect
          state to reflect the current state:
        

        
          
            /AtariBot/bot_3_q_table.py
          
          . . .
while True:
. . .
episode_reward += reward
state = state2
if done:
. . .

        
        
          In the if done block, delete the
          print statement which prints the reward for each episode.
          Instead, you’ll output the average reward over many episodes. The
          if done block will then look like this:
        

        
          
            /AtariBot/bot_3_q_table.py
          
                      . . .
            if done:
                rewards.append(episode_reward)
                break
                . . .

        
        
          After these modifications your game loop will match the following:
        

        
          
            /AtariBot/bot_3_q_table.py
          
          . . .
    for _ in range(num_episodes):
        state = env.reset()
        episode_reward = 0
        while True:
            action = env.action_space.sample()
            state2, reward, done, _ = env.step(action)
            episode_reward += reward
            state = state2
            if done:
                rewards.append(episode_reward))
                break
                . . .

        
        
          Next, add the ability for the agent to trade off between exploration
          and exploitation. Right before your main game loop (which starts with
          for...), create the Q-value table:
        

        
          
            /AtariBot/bot_3_q_table.py
          
          . . .
    Q = np.zeros((env.observation_space.n, env.action_space.n))
    for _ in range(num_episodes):
      . . .

        
        
          Then, rewrite the for loop to expose the episode number:
        

        
          
            /AtariBot/bot_3_q_table.py
          
          . . .
    Q = np.zeros((env.observation_space.n, env.action_space.n))
    for episode in range(1, num_episodes + 1):
      . . .

        
        
          Inside the while True: inner game loop, create
          noise. Noise, or meaningless, random data, is
          sometimes introduced when training deep neural networks because it can
          improve both the performance and the accuracy of the model. Note that
          the higher the noise, the less the values in
          Q[state, :] matter. As a result, the higher the noise,
          the more likely that the agent acts independently of its knowledge of
          the game. In other words, higher noise encourages the agent to
          explore random actions:
        

        
          
            /AtariBot/bot_3_q_table.py
          
                  . . .
        while True:
            noise = np.random.random((1, env.action_space.n)) / (episode**2.)
            action = env.action_space.sample()
            . . .

        
        
          Note that as episodes increases, the amount of noise
          decreases quadratically: as time goes on, the agent explores less and
          less because it can trust its own assessment of the game’s reward and
          begin to exploit its knowledge.
        

        
          Update the action line to have your agent pick actions
          according to the Q-value table, with some exploration built in:
        

        
          
            /AtariBot/bot_3_q_table.py
          
                      . . .
            noise = np.random.random((1, env.action_space.n)) / (episode**2.)
            action = np.argmax(Q[state, :] + noise)
            state2, reward, done, _ = env.step(action)
            . . .

        
        Your main game loop will then match the following:

        
          
            /AtariBot/bot_3_q_table.py
          
          . . .
    Q = np.zeros((env.observation_space.n, env.action_space.n))
    for episode in range(1, num_episodes + 1):
        state = env.reset()
        episode_reward = 0
        while True:
            noise = np.random.random((1, env.action_space.n)) / (episode**2.)
            action = np.argmax(Q[state, :] + noise)
            state2, reward, done, _ = env.step(action)
            episode_reward += reward
            state = state2
            if done:
                rewards.append(episode_reward)
                break
                . . .

        
        
          Next, you will update your Q-value table using the
          Bellman update equation, an equation widely used in machine learning to find the optimal
          policy within a given environment.
        

        
          The Bellman equation incorporates two ideas that are highly relevant
          to this project. First, taking a particular action from a particular
          state many times will result in a good estimate for the Q-value
          associated with that state and action. To this end, you will increase
          the number of episodes this bot must play through in order to return a
          stronger Q-value estimate. Second, rewards must propagate through
          time, so that the original action is assigned a non-zero reward. This
          idea is clearest in games with delayed rewards; for example, in Space
          Invaders, the player is rewarded when the alien is blown up and not
          when the player shoots. However, the player shooting is the true
          impetus for a reward. Likewise, the Q-function must assign
          (state0, shoot) a positive reward.
        

        First, update num_episodes to equal 4000:

        
          
            /AtariBot/bot_3_q_table.py
          
          . . .
np.random.seed(0)

num_episodes = 4000
. . .

        
        
          Then, add the necessary hyperparameters to the top of the file in the
          form of two more variables:
        

        
          
            /AtariBot/bot_3_q_table.py
          
          . . .
num_episodes = 4000
discount_factor = 0.8
learning_rate = 0.9
. . .

        
        
          Compute the new target Q-value, right after the line containing
          env.step(...):
        

        
          
            /AtariBot/bot_3_q_table.py
          
                      . . .
            state2, reward, done, _ = env.step(action)
            Qtarget = reward + discount_factor * np.max(Q[state2, :])
            episode_reward += reward
            . . .

        
        
          On the line directly after Qtarget, update the Q-value
          table using a weighted average of the old and new Q-values:
        

        
          
            /AtariBot/bot_3_q_table.py
          
                      . . .
            Qtarget = reward + discount_factor * np.max(Q[state2, :])
            Q[state, action] = (
                1-learning_rate
                ) * Q[state, action] + learning_rate * Qtarget
            episode_reward += reward
            . . .

        
        Check that your main game loop now matches the following:

        
          
            /AtariBot/bot_3_q_table.py
          
          . . .
    Q = np.zeros((env.observation_space.n, env.action_space.n))
    for episode in range(1, num_episodes + 1):
        state = env.reset()
        episode_reward = 0
        while True:
            noise = np.random.random((1, env.action_space.n)) / (episode**2.)
            action = np.argmax(Q[state, :] + noise)
            state2, reward, done, _ = env.step(action)
            Qtarget = reward + discount_factor * np.max(Q[state2, :])
            Q[state, action] = (
                1-learning_rate
                ) * Q[state, action] + learning_rate * Qtarget
            episode_reward += reward
            state = state2
            if done:
                rewards.append(episode_reward)
                break
                . . .

        
        
          Our logic for training the agent is now complete. All that’s left is
          to add reporting mechanisms.
        

        
          Even though Python does not enforce strict type checking, add types to
          your function declarations for cleanliness. At the top of the file,
          before the first line reading import gym, import the
          List type:
        

        
          
            /AtariBot/bot_3_q_table.py
          
          . . .
from typing import List
import gym
. . .

        
        
          Right after learning_rate = 0.9, outside of the
          main function, declare the interval and format for
          reports:
        

        
          
            /AtariBot/bot_3_q_table.py
          
          . . .
learning_rate = 0.9
report_interval = 500
report = '100-ep Average: %.2f . Best 100-ep Average: %.2f . Average: %.2f ' \
         '(Episode %d)'

def main():
. . .

        
        
          Before the main function, add a new function that will
          populate this report string, using the list of all
          rewards:
        

        
          
            /AtariBot/bot_3_q_table.py
          
          . . .
report = '100-ep Average: %.2f . Best 100-ep Average: %.2f . Average: %.2f ' \
 '(Episode %d)'

def print_report(rewards: List, episode: int):
"""Print rewards report for current episode
- Average for last 100 episodes
- Best 100-episode average across all time
- Average for all episodes across time
"""
print(report % (
np.mean(rewards[-100:]),
max([np.mean(rewards[i:i+100]) for i in range(len(rewards) - 100)]),
np.mean(rewards),
episode))

def main():
. . .

        
        
          Change the game to FrozenLake instead of
          SpaceInvaders:
        

        
          
            /AtariBot/bot_3_q_table.py
          
          . . .
def main():
env = gym.make('FrozenLake-v0') # create the game
. . .

        
        
          After rewards.append(...), print the average reward over
          the last 100 episodes and print the average reward across all
          episodes:
        

        
          
            /AtariBot/bot_3_q_table.py
          
                      . . .
            if done:
                rewards.append(episode_reward)
                if episode % report_interval == 0:
                    print_report(rewards, episode)
                . . .

        
        
          At the end of the main() function, report both averages
          once more. Do this by replacing the line that reads
          print('Average reward: %.2f' % (sum(rewards) / len(rewards)))
          with the following highlighted line:
        

        
          
            /AtariBot/bot_3_q_table.py
          
          . . .
def main():
...
break
print_report(rewards, -1)
. . .

        
        
          Finally, you have completed your Q-learning agent. Check that your
          script aligns with the following:
        

        
          
            /AtariBot/bot_3_q_table.py
          
          """
Bot 3 -- Build simple q-learning agent for FrozenLake
"""

from typing import List
import gym
import numpy as np
import random

random.seed(0)  # make results reproducible
np.random.seed(0)  # make results reproducible


num_episodes = 4000
discount_factor = 0.8
learning_rate = 0.9
report_interval = 500
report = '100-ep Average: %.2f . Best 100-ep Average: %.2f . Average: %.2f ' \
         '(Episode %d)'


def print_report(rewards: List, episode: int):
    """Print rewards report for current episode
    - Average for last 100 episodes
    - Best 100-episode average across all time
    - Average for all episodes across time
    """
    print(report % (
        np.mean(rewards[-100:]),
        max([np.mean(rewards[i:i+100]) for i in range(len(rewards) - 100)]),
        np.mean(rewards),
        episode))


def main():
    env = gym.make('FrozenLake-v0')  # create the game
    env.seed(0)  # make results reproducible
    rewards = []

    Q = np.zeros((env.observation_space.n, env.action_space.n))
    for episode in range(1, num_episodes + 1):
        state = env.reset()
        episode_reward = 0
        while True:
            noise = np.random.random((1, env.action_space.n)) / (episode**2.)
            action = np.argmax(Q[state, :] + noise)
            state2, reward, done, _ = env.step(action)
            Qtarget = reward + discount_factor * np.max(Q[state2, :])
            Q[state, action] = (
                1-learning_rate
                ) * Q[state, action] + learning_rate * Qtarget
            episode_reward += reward
            state = state2
            if done:
                rewards.append(episode_reward)
                if episode % report_interval == 0:
                    print_report(rewards, episode)
                break
    print_report(rewards, -1)

if __name__ == '__main__':
    main()

        
        Save the file, exit your editor, and run the script:

        
          python bot_3_q_table.py

        
        Your output will match the following:

        
          
            Output
          
          100-ep Average: 0.11 . Best 100-ep Average: 0.12 . Average: 0.03 (Episode 500)
100-ep Average: 0.25 . Best 100-ep Average: 0.24 . Average: 0.09 (Episode 1000)
100-ep Average: 0.39 . Best 100-ep Average: 0.48 . Average: 0.19 (Episode 1500)
100-ep Average: 0.43 . Best 100-ep Average: 0.55 . Average: 0.25 (Episode 2000)
100-ep Average: 0.44 . Best 100-ep Average: 0.55 . Average: 0.29 (Episode 2500)
100-ep Average: 0.64 . Best 100-ep Average: 0.68 . Average: 0.32 (Episode 3000)
100-ep Average: 0.63 . Best 100-ep Average: 0.71 . Average: 0.36 (Episode 3500)
100-ep Average: 0.56 . Best 100-ep Average: 0.78 . Average: 0.40 (Episode 4000)
100-ep Average: 0.56 . Best 100-ep Average: 0.78 . Average: 0.40 (Episode -1)

        
        
          You now have your first non-trivial bot for games, but let’s put this
          average reward of 0.78 into perspective. According to the
          Gym FrozenLake page, “solving” the game means attaining a 100-episode average of
          0.78. Informally, “solving” means “plays the game very
          well”. While not in record time, the Q-table agent is able to solve
          FrozenLake in 4000 episodes.
        

        
          However, the game may be more complex. Here, you used a table to store
          all of the 144 possible states, but consider tic tac toe in which
          there are 19,683 possible states. Likewise, consider Space Invaders
          where there are too many possible states to count. A Q-table is not
          sustainable as games grow increasingly complex. For this reason, you
          need some way to approximate the Q-table. As you continue
          experimenting in the next step, you will design a function that can
          accept states and actions as inputs and output a Q-value.
        

      
      
        Step 4 — Building a Deep Q-learning Agent for Frozen Lake

        
          In reinforcement learning, the neural network effectively predicts the
          value of Q based on the state and
          action inputs, using a table to store all the possible
          values, but this becomes unstable in complex games. Deep reinforcement
          learning instead uses a neural network to approximate the Q-function.
          For more details, see
          Understanding Deep Q-Learning.
        

        
          To get accustomed to
          Tensorflow, a deep learning
          library you installed in Step 1, you will reimplement all of the logic
          used so far with Tensorflow’s abstractions and you’ll use a neural
          network to approximate your Q-function. However, your neural network
          will be extremely simple: your output Q(s) is a matrix
          W multiplied by your input s. This is known
          as a neural network with one fully-connected layer:
        

        
          Q(s) = Ws

        
        
          To reiterate, the goal is to reimplement all of the logic from the
          bots we’ve already built using Tensorflow’s abstractions. This will
          make your operations more efficient, as Tensorflow can then perform
          all computation on the GPU.
        

        Begin by duplicating your Q-table script from Step 3:

        
          cp bot_3_q_table.py bot_4_q_network.py

        
        
          Then open the new file with nano or your preferred text
          editor:
        

        
          nano bot_4_q_network.py

        
        First, update the comment at the top of the file:

        
          
            /AtariBot/bot_4_q_network.py
          
          """
Bot 4 -- Use Q-learning network to train bot
"""

. . .

        
        
          Next, import the Tensorflow package by adding an
          import directive right below import random.
          Additionally, add tf.set_radon_seed(0) right below
          np.random.seed(0). This will ensure that the results of
          this script will be repeatable across all sessions:
        

        
          
            /AtariBot/bot_4_q_network.py
          
          . . .
import random
import tensorflow as tf

random.seed(0)
np.random.seed(0)
tf.set_random_seed(0)
. . .

        
        
          Redefine your hyperparameters at the top of the file to match the
          following and add a function called
          exploration_probability, which will return the
          probability of exploration at each step. Remember that, in this
          context, “exploration” means taking a random action, as opposed to
          taking the action recommended by the Q-value estimates:
        

        
          
            /AtariBot/bot_4_q_network.py
          
          . . .
num_episodes = 4000
discount_factor = 0.99
learning_rate = 0.15
report_interval = 500
exploration_probability = lambda episode: 50. / (episode + 10)
report = '100-ep Average: %.2f . Best 100-ep Average: %.2f . Average: %.2f ' \
 '(Episode %d)'
. . .

        
        
          Next, you will add a one-hot encoding function. In short,
          one-hot encoding is a process through which variables are converted
          into a form that helps machine learning algorithms make better
          predictions. If you’d like to learn more about one-hot encoding, you
          can check out
          Adversarial Examples in Computer Vision: How to Build then Fool an
            Emotion-Based Dog Filter.
        

        
          Directly beneath report = ..., add a
          one_hot function:
        

        
          
            /AtariBot/bot_4_q_network.py
          
          . . .
report = '100-ep Average: %.2f . Best 100-ep Average: %.2f . Average: %.2f ' \
 '(Episode %d)'

def one_hot(i: int, n: int) -> np.array:
"""Implements one-hot encoding by selecting the ith standard basis vector"""
return np.identity(n)[i].reshape((1, -1))

def print_report(rewards: List, episode: int):
. . .

        
        
          Next, you will rewrite your algorithm logic using Tensorflow’s
          abstractions. Before doing that, though, you’ll need to first create
          placeholders for your data.
        

        
          In your main function, directly beneath
          rewards=[], insert the following highlighted content.
          Here, you define placeholders for your observation at time
          t (as obs_t_ph) and time
          t+1 (as obs_tp1_ph), as well as
          placeholders for your action, reward, and Q target:
        

        
          
            /AtariBot/bot_4_q_network.py
          
          . . .
def main():
env = gym.make('FrozenLake-v0') # create the game
env.seed(0) # make results reproducible
rewards = []

    # 1. Setup placeholders
    n_obs, n_actions = env.observation_space.n, env.action_space.n
    obs_t_ph = tf.placeholder(shape=[1, n_obs], dtype=tf.float32)
    obs_tp1_ph = tf.placeholder(shape=[1, n_obs], dtype=tf.float32)
    act_ph = tf.placeholder(tf.int32, shape=())
    rew_ph = tf.placeholder(shape=(), dtype=tf.float32)
    q_target_ph = tf.placeholder(shape=[1, n_actions], dtype=tf.float32)

    Q = np.zeros((env.observation_space.n, env.action_space.n))
    for episode in range(1, num_episodes + 1):
        . . .

        
        
          Directly beneath the line beginning with q_target_ph =,
          insert the following highlighted lines. This code starts your
          computation by computing Q(s, a) for all
          a to make q_current and
          Q(s’, a’) for all a’ to make
          q_target:
        

        
          
            /AtariBot/bot_4_q_network.py
          
              . . .
    rew_ph = tf.placeholder(shape=(), dtype=tf.float32)
    q_target_ph = tf.placeholder(shape=[1, n_actions], dtype=tf.float32)

    # 2. Setup computation graph
    W = tf.Variable(tf.random_uniform([n_obs, n_actions], 0, 0.01))
    q_current = tf.matmul(obs_t_ph, W)
    q_target = tf.matmul(obs_tp1_ph, W)

    Q = np.zeros((env.observation_space.n, env.action_space.n))
    for episode in range(1, num_episodes + 1):
        . . .

        
        
          Again directly beneath the last line you added, insert the following
          higlighted code. The first two lines are equivalent to the line added
          in Step 3 that computes Qtarget, where
          Qtarget = reward + discount_factor * np.max(Q[state2, :]). The next two lines set up your loss, while the last line computes
          the action that maximizes your Q-value:
        

        
          
            /AtariBot/bot_4_q_network.py
          
              . . .
    q_current = tf.matmul(obs_t_ph, W)
    q_target = tf.matmul(obs_tp1_ph, W)

    q_target_max = tf.reduce_max(q_target_ph, axis=1)
    q_target_sa = rew_ph + discount_factor * q_target_max
    q_current_sa = q_current[0, act_ph]
    error = tf.reduce_sum(tf.square(q_target_sa - q_current_sa))
    pred_act_ph = tf.argmax(q_current, 1)

    Q = np.zeros((env.observation_space.n, env.action_space.n))
    for episode in range(1, num_episodes + 1):
        . . .

        
        
          After setting up your algorithm and the loss function, define your
          optimizer:
        

        
          
            /AtariBot/bot_4_q_network.py
          
              . . .
    error = tf.reduce_sum(tf.square(q_target_sa - q_current_sa))
    pred_act_ph = tf.argmax(q_current, 1)

    # 3. Setup optimization
    trainer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
    update_model = trainer.minimize(error)

    Q = np.zeros((env.observation_space.n, env.action_space.n))
    for episode in range(1, num_episodes + 1):
        . . .

        
        
          Next, set up the body of the game loop. To do this, pass data to the
          Tensorflow placeholders and Tensorflow’s abstractions will handle the
          computation on the GPU, returning the result of the algorithm.
        

        
          Start by deleting the old Q-table and logic. Specifically, delete the
          lines that define Q (right before the
          for loop), noise (in the
          while loop), action, Qtarget,
          and Q[state, action]. Rename state to
          obs_t and state2 to obs_tp1 to
          align with the Tensorflow placeholders you set previously. When
          finished, your for loop will match the following:
        

        
          
            /AtariBot/bot_4_q_network.py
          
              . . .
    # 3. Setup optimization
    trainer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
    update_model = trainer.minimize(error)

    for episode in range(1, num_episodes + 1):
        obs_t = env.reset()
        episode_reward = 0
        while True:

            obs_tp1, reward, done, _ = env.step(action)

            episode_reward += reward
            obs_t = obs_tp1
            if done:
                ...

        
        
          Directly above the for loop, add the following two
          highlighted lines. These lines initialize a Tensorflow session which
          in turn manages the resources needed to run operations on the GPU. The
          second line initializes all the variables in your computation graph;
          for example, initializing weights to 0 before updating them.
          Additionally, you will nest the for loop within the
          with statement, so indent the entire
          for loop by four spaces:
        

        
          
            /AtariBot/bot_4_q_network.py
          
              . . .
    trainer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
        update_model = trainer.minimize(error)

    with tf.Session() as session:
        session.run(tf.global_variables_initializer())

        for episode in range(1, num_episodes + 1):
            obs_t = env.reset()
            ...

        
        
          Before the line reading
          obs_tp1, reward, done, _ = env.step(action), insert the
          following lines to compute the action. This code
          evaluates the corresponding placeholder and replaces the action with a
          random action with some probability:
        

        
          
            /AtariBot/bot_4_q_network.py
          
                      . . .
            while True:
                # 4. Take step using best action or random action
                obs_t_oh = one_hot(obs_t, n_obs)
                action = session.run(pred_act_ph, feed_dict={obs_t_ph: obs_t_oh})[0]
                if np.random.rand(1) < exploration_probability(episode):
                    action = env.action_space.sample()
                . . .

        
        
          After the line containing env.step(action), insert the
          following to train the neural network in estimating your Q-value
          function:
        

        
          
            /AtariBot/bot_4_q_network.py
          
                          . . .
                obs_tp1, reward, done, _ = env.step(action)

                # 5. Train model
                obs_tp1_oh = one_hot(obs_tp1, n_obs)
                q_target_val = session.run(q_target, feed_dict={
                    obs_tp1_ph: obs_tp1_oh
                    })
                session.run(update_model, feed_dict={
                    obs_t_ph: obs_t_oh,
                    rew_ph: reward,
                    q_target_ph: q_target_val,
                    act_ph: action
                })
                episode_reward += reward
                . . .

        
        Your final file will match this source code:

        
          
            /AtariBot/bot_4_q_network.py
          
          """
Bot 4 -- Use Q-learning network to train bot
"""

from typing import List
import gym
import numpy as np
import random
import tensorflow as tf

random.seed(0)
np.random.seed(0)
tf.set_random_seed(0)

num_episodes = 4000
discount_factor = 0.99
learning_rate = 0.15
report_interval = 500
exploration_probability = lambda episode: 50. / (episode + 10)
report = '100-ep Average: %.2f . Best 100-ep Average: %.2f . Average: %.2f ' \
         '(Episode %d)'


def one_hot(i: int, n: int) -> np.array:
    """Implements one-hot encoding by selecting the ith standard basis vector"""
    return np.identity(n)[i].reshape((1, -1))


def print_report(rewards: List, episode: int):
    """Print rewards report for current episode
    - Average for last 100 episodes
    - Best 100-episode average across all time
    - Average for all episodes across time
    """
    print(report % (
        np.mean(rewards[-100:]),
        max([np.mean(rewards[i:i+100]) for i in range(len(rewards) - 100)]),
        np.mean(rewards),
        episode))


def main():
    env = gym.make('FrozenLake-v0')  # create the game
    env.seed(0)  # make results reproducible
    rewards = []

    # 1. Setup placeholders
    n_obs, n_actions = env.observation_space.n, env.action_space.n
    obs_t_ph = tf.placeholder(shape=[1, n_obs], dtype=tf.float32)
    obs_tp1_ph = tf.placeholder(shape=[1, n_obs], dtype=tf.float32)
    act_ph = tf.placeholder(tf.int32, shape=())
    rew_ph = tf.placeholder(shape=(), dtype=tf.float32)
    q_target_ph = tf.placeholder(shape=[1, n_actions], dtype=tf.float32)

    # 2. Setup computation graph
    W = tf.Variable(tf.random_uniform([n_obs, n_actions], 0, 0.01))
    q_current = tf.matmul(obs_t_ph, W)
    q_target = tf.matmul(obs_tp1_ph, W)

    q_target_max = tf.reduce_max(q_target_ph, axis=1)
    q_target_sa = rew_ph + discount_factor * q_target_max
    q_current_sa = q_current[0, act_ph]
    error = tf.reduce_sum(tf.square(q_target_sa - q_current_sa))
    pred_act_ph = tf.argmax(q_current, 1)

    # 3. Setup optimization
    trainer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
    update_model = trainer.minimize(error)

    with tf.Session() as session:
        session.run(tf.global_variables_initializer())

        for episode in range(1, num_episodes + 1):
            obs_t = env.reset()
            episode_reward = 0
            while True:

                # 4. Take step using best action or random action
                obs_t_oh = one_hot(obs_t, n_obs)
                action = session.run(pred_act_ph, feed_dict={obs_t_ph: obs_t_oh})[0]
                if np.random.rand(1) < exploration_probability(episode):
                    action = env.action_space.sample()
                obs_tp1, reward, done, _ = env.step(action)

                # 5. Train model
                obs_tp1_oh = one_hot(obs_tp1, n_obs)
                q_target_val = session.run(q_target, feed_dict={
                    obs_tp1_ph: obs_tp1_oh
                    })
                session.run(update_model, feed_dict={
                    obs_t_ph: obs_t_oh,
                    rew_ph: reward,
                    q_target_ph: q_target_val,
                    act_ph: action
                })
                episode_reward += reward
                obs_t = obs_tp1

                if done:
                    rewards.append(episode_reward)
                    if episode % report_interval == 0:
                        print_report(rewards, episode)
                    break
        print_report(rewards, -1)

if __name__ == '__main__':
    main()

        
        Save the file, exit your editor, and run the script:

        
          python bot_4_q_network.py

        
        Your output will end with the following, exactly:

        
          
            Output
          
          100-ep Average: 0.11 . Best 100-ep Average: 0.11 . Average: 0.05 (Episode 500)
100-ep Average: 0.41 . Best 100-ep Average: 0.54 . Average: 0.19 (Episode 1000)
100-ep Average: 0.56 . Best 100-ep Average: 0.73 . Average: 0.31 (Episode 1500)
100-ep Average: 0.57 . Best 100-ep Average: 0.73 . Average: 0.36 (Episode 2000)
100-ep Average: 0.65 . Best 100-ep Average: 0.73 . Average: 0.41 (Episode 2500)
100-ep Average: 0.65 . Best 100-ep Average: 0.73 . Average: 0.43 (Episode 3000)
100-ep Average: 0.69 . Best 100-ep Average: 0.73 . Average: 0.46 (Episode 3500)
100-ep Average: 0.77 . Best 100-ep Average: 0.79 . Average: 0.48 (Episode 4000)
100-ep Average: 0.77 . Best 100-ep Average: 0.79 . Average: 0.48 (Episode -1)

        
        
          You’ve now trained your very first deep Q-learning agent. For a game
          as simple as FrozenLake, your deep Q-learning agent required 4000
          episodes to train. Imagine if the game were far more complex. How many
          training samples would that require to train? As it turns out, the
          agent could require millions of samples. The number of
          samples required is referred to as sample complexity, a
          concept explored further in the next section.
        

      
      
        Understanding Bias-Variance Tradeoffs

        
          Generally speaking, sample complexity is at odds with model complexity
          in machine learning:
        

        
          	
            Model complexity: One wants a sufficiently complex
            model to solve their problem. For example, a model as simple as a
            line is not sufficiently complex to predict a car’s trajectory.
          

          	
            Sample complexity: One would like a model that does
            not require many samples. This could be because they have a limited
            access to labeled data, an insufficient amount of computing power,
            limited memory, etc.
          

        

        
          Say we have two models, one simple and one extremely complex. For both
          models to attain the same performance, bias-variance tells us that the
          extremely complex model will need exponentially more samples to train.
          Case in point: your neural network-based Q-learning agent required
          4000 episodes to solve FrozenLake. Adding a second layer to the neural
          network agent quadruples the number of necessary training episodes.
          With increasingly complex neural networks, this divide only grows. To
          maintain the same error rate, increasing model complexity increases
          the sample complexity exponentially. Likewise, decreasing sample
          complexity decreases model complexity. Thus, we cannot maximize model
          complexity and minimize sample complexity to our heart’s desire.
        

        
          We can, however, leverage our knowledge of this tradeoff. For a visual
          interpretation of the mathematics behind the
          bias-variance decomposition, see
          Understanding the Bias-Variance Tradeoff. At a high level, the bias-variance decomposition is a breakdown of
          “true error” into two components: bias and variance. We refer to “true
          error” as mean squared error (MSE), which is the expected
          difference between our predicted labels and the true labels. The
          following is a plot showing the change of “true error” as model
          complexity increases:
        

        
          [image: Mean Squared Error curve]
          Mean Squared Error curve
        
      
      
        Step 5 — Building a Least Squares Agent for Frozen Lake

        
          The least squares method, also known as
          linear regression, is a means of regression analysis used
          widely in the fields of mathematics and data science. In machine
          learning, it’s often used to find the optimal linear model of two
          parameters or datasets.
        

        
          In Step 4, you built a neural network to compute Q-values. Instead of
          a neural network, in this step you will use ridge regression,
          a variant of least squares, to compute this vector of Q-values. The
          hope is that with a model as uncomplicated as least squares, solving
          the game will require fewer training episodes.
        

        Start by duplicating the script from Step 3:

        
          cp bot_3_q_table.py bot_5_ls.py

        
        Open the new file:

        
          nano bot_5_ls.py

        
        
          Again, update the comment at the top of the file describing what this
          script will do:
        

        
          
            /AtariBot/bot_4_q_network.py
          
          """
Bot 5 -- Build least squares q-learning agent for FrozenLake
"""
. . .

        
        
          Before the block of imports near the top of your file, add two more
          imports for type checking:
        

        
          
            /AtariBot/bot_5_ls.py
          
          . . .
from typing import Tuple
from typing import Callable
from typing import List
import gym
. . .

        
        
          In your list of hyperparameters, add another hyperparameter,
          w_lr, to control the second Q-function’s learning rate.
          Additionally, update the number of episodes to 5000 and the discount
          factor to 0.85. By changing both the
          num_episodes and
          discount_factor hyperparameters to larger values, the
          agent will be able to issue a stronger performance:
        

        
          
            /AtariBot/bot_5_ls.py
          
          . . .
num_episodes = 5000
discount_factor = 0.85
learning_rate = 0.9
w_lr = 0.5
report_interval = 500
. . .

        
        
          Before your print_report function, add the following
          higher-order function. It returns a lambda — an anonymous function —
          that abstracts away the model:
        

        
          
            /AtariBot/bot_5_ls.py
          
          . . .
report_interval = 500
report = '100-ep Average: %.2f . Best 100-ep Average: %.2f . Average: %.2f ' \
 '(Episode %d)'

def makeQ(model: np.array) -> Callable[[np.array], np.array]:
"""Returns a Q-function, which takes state -> distribution over actions"""
return lambda X: X.dot(model)

def print_report(rewards: List, episode: int):
. . .

        
        
          After makeQ, add another function,
          initialize, which initializes the model using
          normally-distributed values:
        

        
          
            /AtariBot/bot_5_ls.py
          
          . . .
def makeQ(model: np.array) -> Callable[[np.array], np.array]:
"""Returns a Q-function, which takes state -> distribution over actions"""
return lambda X: X.dot(model)

def initialize(shape: Tuple):
"""Initialize model"""
W = np.random.normal(0.0, 0.1, shape)
Q = makeQ(W)
return W, Q

def print_report(rewards: List, episode: int):
. . .

        
        
          After the initialize block, add a
          train method that computes the ridge regression
          closed-form solution, then weights the old model with the new one. It
          returns both the model and the abstracted Q-function:
        

        
          
            /AtariBot/bot_5_ls.py
          
          . . .
def initialize(shape: Tuple):
...
return W, Q

def train(X: np.array, y: np.array, W: np.array) -> Tuple[np.array, Callable]:
"""Train the model, using solution to ridge regression"""
I = np.eye(X.shape[1])
newW = np.linalg.inv(X.T.dot(X) + 10e-4 _ I).dot(X.T.dot(y))
W = w_lr _ newW + (1 - w_lr) \* W
Q = makeQ(W)
return W, Q

def print_report(rewards: List, episode: int):
. . .

        
        
          After train, add one last function, one_hot,
          to perform one-hot encoding for your states and actions:
        

        
          
            /AtariBot/bot_5_ls.py
          
          . . .
def train(X: np.array, y: np.array, W: np.array) -> Tuple[np.array, Callable]:
...
return W, Q

def one_hot(i: int, n: int) -> np.array:
"""Implements one-hot encoding by selecting the ith standard basis vector"""
return np.identity(n)[i]

def print_report(rewards: List, episode: int):
. . .

        
        
          Following this, you will need to modify the training logic. In the
          previous script you wrote, the Q-table was updated every iteration.
          This script, however, will collect samples and labels every time step
          and train a new model every 10 steps. Additionally, instead of holding
          a Q-table or a neural network, it will use a least squares model to
          predict Q-values.
        

        
          Go to the main function and replace the definition of the
          Q-table (Q = np.zeros(...)) with the following:
        

        
          
            /AtariBot/bot_5_ls.py
          
          . . .
def main():
...
rewards = []

    n_obs, n_actions = env.observation_space.n, env.action_space.n
    W, Q = initialize((n_obs, n_actions))
    states, labels = [], []
    for episode in range(1, num_episodes + 1):
        . . .

        
        
          Scroll down before the for loop. Directly below this, add
          the following lines which reset the states and
          labels lists if there is too much information stored:
        

        
          
            /AtariBot/bot_5_ls.py
          
          . . .
def main():
...
for episode in range(1, num_episodes + 1):
if len(states) >= 10000:
states, labels = [], []
. . .

        
        
          Modify the line directly after this one, which defines
          state = env.reset(), so that it becomes the following.
          This will one-hot encode the state immediately, as all of its usages
          will require a one-hot vector:
        

        
          
            /AtariBot/bot_5_ls.py
          
          . . .
for episode in range(1, num_episodes + 1):
if len(states) >= 10000:
states, labels = [], []
state = one_hot(env.reset(), n_obs)
. . .

        
        
          Before the first line in your while main game loop, amend
          the list of states:
        

        
          
            /AtariBot/bot_5_ls.py
          
          . . .
for episode in range(1, num_episodes + 1):
...
episode_reward = 0
while True:
states.append(state)
noise = np.random.random((1, env.action_space.n)) / (episode\*\*2.)
. . .

        
        
          Update the computation for action, decrease the
          probability of noise, and modify the Q-function evaluation:
        

        
          
            /AtariBot/bot_5_ls.py
          
          . . .
while True:
states.append(state)
noise = np.random.random((1, n*actions)) / episode
action = np.argmax(Q(state) + noise)
state2, reward, done, * = env.step(action)
. . .

        
        
          Add a one-hot version of state2 and amend the Q-function
          call in your definition for Qtarget as follows:
        

        
          
            /AtariBot/bot_5_ls.py
          
          . . .
while True:
...
state2, reward, done, \_ = env.step(action)

            state2 = one_hot(state2, n_obs)
            Qtarget = reward + discount_factor * np.max(Q(state2))
            . . .

        
        
          Delete the line that updates Q[state,action] = ... and
          replace it with the following lines. This code takes the output of the
          current model and updates only the value in this output that
          corresponds to the current action taken. As a result, Q-values for the
          other actions don’t incur loss:
        

        
          
            /AtariBot/bot_5_ls.py
          
          . . .
state2 = one_hot(state2, n_obs)
Qtarget = reward + discount_factor _ np.max(Q(state2))
label = Q(state)
label[action] = (1 - learning_rate) _ label[action] + learning_rate \* Qtarget
labels.append(label)

            episode_reward += reward
            . . .

        
        
          Right after state = state2, add a periodic update to the
          model. This trains your model every 10 time steps:
        

        
          
            /AtariBot/bot_5_ls.py
          
          . . .
state = state2
if len(states) % 10 == 0:
W, Q = train(np.array(states), np.array(labels), W)
if done:
. . .

        
        Ensure that your code matches the following:

        
          
            /AtariBot_5_ls.py
          
          """
Bot 5 -- Build least squares q-learning agent for FrozenLake
"""

from typing import Tuple
from typing import Callable
from typing import List
import gym
import numpy as np
import random

random.seed(0)  # make results reproducible
np.random.seed(0)  # make results reproducible

num_episodes = 5000
discount_factor = 0.85
learning_rate = 0.9
w_lr = 0.5
report_interval = 500
report = '100-ep Average: %.2f . Best 100-ep Average: %.2f . Average: %.2f ' \
         '(Episode %d)'


def makeQ(model: np.array) -> Callable[[np.array], np.array]:
    """Returns a Q-function, which takes state -> distribution over actions"""
    return lambda X: X.dot(model)


def initialize(shape: Tuple):
    """Initialize model"""
    W = np.random.normal(0.0, 0.1, shape)
    Q = makeQ(W)
    return W, Q


def train(X: np.array, y: np.array, W: np.array) -> Tuple[np.array, Callable]:
    """Train the model, using solution to ridge regression"""
    I = np.eye(X.shape[1])
    newW = np.linalg.inv(X.T.dot(X) + 10e-4 * I).dot(X.T.dot(y))
    W = w_lr * newW + (1 - w_lr) * W
    Q = makeQ(W)
    return W, Q


def one_hot(i: int, n: int) -> np.array:
    """Implements one-hot encoding by selecting the ith standard basis vector"""
    return np.identity(n)[i]


def print_report(rewards: List, episode: int):
    """Print rewards report for current episode
    - Average for last 100 episodes
    - Best 100-episode average across all time
    - Average for all episodes across time
    """
    print(report % (
        np.mean(rewards[-100:]),
        max([np.mean(rewards[i:i+100]) for i in range(len(rewards) - 100)]),
        np.mean(rewards),
        episode))


def main():
    env = gym.make('FrozenLake-v0')  # create the game
    env.seed(0)  # make results reproducible
    rewards = []

    n_obs, n_actions = env.observation_space.n, env.action_space.n
    W, Q = initialize((n_obs, n_actions))
    states, labels = [], []
    for episode in range(1, num_episodes + 1):
        if len(states) >= 10000:
            states, labels = [], []
        state = one_hot(env.reset(), n_obs)
        episode_reward = 0
        while True:
            states.append(state)
            noise = np.random.random((1, n_actions)) / episode
            action = np.argmax(Q(state) + noise)
            state2, reward, done, _ = env.step(action)

            state2 = one_hot(state2, n_obs)
            Qtarget = reward + discount_factor * np.max(Q(state2))
            label = Q(state)
            label[action] = (1 - learning_rate) * label[action] + \
                learning_rate * Qtarget
            labels.append(label)

            episode_reward += reward
            state = state2
            if len(states) % 10 == 0:
                W, Q = train(np.array(states), np.array(labels), W)
            if done:
                rewards.append(episode_reward)
                if episode % report_interval == 0:
                    print_report(rewards, episode)
                break
    print_report(rewards, -1)

if __name__ == '__main__':
    main()

        
        Then, save the file, exit the editor, and run the script:

        
          python bot_5_ls.py

        
        This will output the following:

        
          
            Output
          
          100-ep Average: 0.17 . Best 100-ep Average: 0.17 . Average: 0.09 (Episode 500)
100-ep Average: 0.11 . Best 100-ep Average: 0.24 . Average: 0.10 (Episode 1000)
100-ep Average: 0.08 . Best 100-ep Average: 0.24 . Average: 0.10 (Episode 1500)
100-ep Average: 0.24 . Best 100-ep Average: 0.25 . Average: 0.11 (Episode 2000)
100-ep Average: 0.32 . Best 100-ep Average: 0.31 . Average: 0.14 (Episode 2500)
100-ep Average: 0.35 . Best 100-ep Average: 0.38 . Average: 0.16 (Episode 3000)
100-ep Average: 0.59 . Best 100-ep Average: 0.62 . Average: 0.22 (Episode 3500)
100-ep Average: 0.66 . Best 100-ep Average: 0.66 . Average: 0.26 (Episode 4000)
100-ep Average: 0.60 . Best 100-ep Average: 0.72 . Average: 0.30 (Episode 4500)
100-ep Average: 0.75 . Best 100-ep Average: 0.82 . Average: 0.34 (Episode 5000)
100-ep Average: 0.75 . Best 100-ep Average: 0.82 . Average: 0.34 (Episode -1)

        
        
          Recall that, according to the
          Gym FrozenLake page, “solving” the game means attaining a 100-episode average of 0.78.
          Here the agent acheives an average of 0.82, meaning it was able to
          solve the game in 5000 episodes. Although this does not solve the game
          in fewer episodes, this basic least squares method is still able to
          solve a simple game with roughly the same number of training episodes.
          Although your neural networks may grow in complexity, you’ve shown
          that simple models are sufficient for FrozenLake.
        

        
          With that, you have explored three Q-learning agents: one using a
          Q-table, another using a neural network, and a third using least
          squares. Next, you will build a deep reinforcement learning agent for
          a more complex game: Space Invaders.
        

      
      
        Step 6 — Creating a Deep Q-learning Agent for Space Invaders

        
          Say you tuned the previous Q-learning algorithm’s model complexity and
          sample complexity perfectly, regardless of whether you picked a neural
          network or least squares method. As it turns out, this unintelligent
          Q-learning agent still performs poorly on more complex games, even
          with an especially high number of training episodes. This section will
          cover two techniques that can improve performance, then you will test
          an agent that was trained using these techniques.
        

        
          The first general-purpose agent able to continually adapt its behavior
          without any human intervention was developed by the researchers at
          DeepMind, who also trained their agent to play a variety of Atari
          games.
          DeepMind’s original deep Q-learning (DQN) paper
          recognized two important issues:
        

        
          	
            Correlated states: Take the state of our game at
            time 0, which we will call s0. Say we update
            Q(s0), according to the rules we derived
            previously. Now, take the state at time 1, which we call
            s1, and update Q(s1) according to
            the same rules. Note that the game’s state at time 0 is very similar
            to its state at time 1. In Space Invaders, for example, the aliens
            may have moved by one pixel each. Said more succinctly,
            s0 and s1 are very similar.
            Likewise, we also expect Q(s0) and
            Q(s1) to be very similar, so updating one affects
            the other. This leads to fluctuating Q values, as an update to
            Q(s0) may in fact counter the update to
            Q(s1). More formally, s0 and
            s1 are correlated. Since the Q-function is
            deterministic, Q(s1) is correlated with
            Q(s0).
          

          	
            Q-function instability: Recall that the
            Q function is both the model we train and the
            source of our labels. Say that our labels are randomly-selected
            values that truly represent a distribution,
            L. Every time we update Q, we
            change L, meaning that our model is trying to learn
            a moving target. This is an issue, as the models we use assume a
            fixed distribution.
          

        

        To combat correlated states and an unstable Q-function:

        
          	
            One could keep a list of states called a replay buffer.
            Each time step, you add the game state that you observe to this
            replay buffer. You also randomly sample a subset of states from this
            list, and train on those states.
          

          	
            The team at DeepMind duplicated Q(s, a). One is
            called Q_current(s, a), which is the Q-function you
            update. You need another Q-function for successor states,
            Q_target(s’, a’), which you won’t update. Recall
            Q_target(s’, a’) is used to generate your labels.
            By separating Q_current from
            Q_target and fixing the latter, you fix the
            distribution your labels are sampled from. Then, your deep learning
            model can spend a short period learning this distribution. After a
            period of time, you then re-duplicate Q_current for
            a new Q_target.
          

        

        
          You won’t implement these yourself, but you will load pretrained
          models that trained with these solutions. To do this, create a new
          directory where you will store these models’ parameters:
        

        
          mkdir models

        
        
          Then use wget to download a pretrained Space Invaders
          model’s parameters:
        

        
          wget http://models.tensorpack.com/OpenAIGym/SpaceInvaders-v0.tfmodel -P models

        
        
          Next, download a Python script that specifies the model associated
          with the parameters you just downloaded. Note that this pretrained
          model has two constraints on the input that are necessary to keep in
          mind:
        

        
          	
            The states must be downsampled, or reduced in size, to 84 x 84.
          

          	The input consists of four states, stacked.

        

        
          We will address these constraints in more detail later on. For now,
          download the script by typing:
        

        
          wget https://github.com/alvinwan/bots-for-atari-games/raw/master/src/bot_6_a3c.py

        
        
          You will now run this pretrained Space Invaders agent to see how it
          performs. Unlike the past few bots we’ve used, you will write this
          script from scratch.
        

        Create a new script file:

        
          nano bot_6_dqn.py

        
        
          Begin this script by adding a header comment, importing the necessary
          utilities, and beginning the main game loop:
        

        
          
            /AtariBot/bot_6_dqn.py
          
          """
Bot 6 - Fully featured deep q-learning network.
"""

import cv2
import gym
import numpy as np
import random
import tensorflow as tf
from bot_6_a3c import a3c_model

def main():

if **name** == '**main**':
main()

        
        
          Directly after your imports, set random seeds to make your results
          reproducible. Also, define a hyperparameter
          num_episodes which will tell the script how many episodes
          to run the agent for:
        

        
          
            /AtariBot/bot_6_dqn.py
          
          . . .
import tensorflow as tf
from bot_6_a3c import a3c_model
random.seed(0) # make results reproducible
tf.set_random_seed(0)

num_episodes = 10

def main():
. . .

        
        
          Two lines after declaring num_episodes, define a
          downsample function that downsamples all images to a size
          of 84 x 84. You will downsample all images before passing them into
          the pretrained neural network, as the pretrained model was trained on
          84 x 84 images:
        

        
          
            /AtariBot/bot_6_dqn.py
          
          . . .
num_episodes = 10

def downsample(state):
return cv2.resize(state, (84, 84), interpolation=cv2.INTER_LINEAR)[None]

def main():
. . .

        
        
          Create the game environment at the start of your
          main function and seed the environment so that the
          results are reproducible:
        

        
          
            /AtariBot/bot_6_dqn.py
          
          . . .
def main():
env = gym.make('SpaceInvaders-v0') # create the game
env.seed(0) # make results reproducible
. . .

        
        
          Directly after the environment seed, initialize an empty list to hold
          the rewards:
        

        
          
            /AtariBot/bot_6_dqn.py
          
          . . .
def main():
env = gym.make('SpaceInvaders-v0') # create the game
env.seed(0) # make results reproducible
rewards = []
. . .

        
        
          Initialize the pretrained model with the pretrained model parameters
          that you downloaded at the beginning of this step:
        

        
          
            /AtariBot/bot_6_dqn.py
          
          . . .
def main():
env = gym.make('SpaceInvaders-v0') # create the game
env.seed(0) # make results reproducible
rewards = []
model = a3c_model(load='models/SpaceInvaders-v0.tfmodel')
. . .

        
        
          Next, add some lines telling the script to iterate for
          num_episodes times to compute average performance and
          initialize each episode’s reward to 0. Additionally, add a line to
          reset the environment (env.reset()), collecting the new
          initial state in the process, downsample this initial state with
          downsample(), and start the game loop using a
          while loop:
        

        
          
            /AtariBot/bot_6_dqn.py
          
          . . .
def main():
env = gym.make('SpaceInvaders-v0') # create the game
env.seed(0) # make results reproducible
rewards = []
model = a3c*model(load='models/SpaceInvaders-v0.tfmodel')
for * in range(num_episodes):
episode_reward = 0
states = [downsample(env.reset())]
while True:
. . .

        
        
          Instead of accepting one state at a time, the new neural network
          accepts four states at a time. As a result, you must wait until the
          list of states contains at least four states before
          applying the pretrained model. Add the following lines below the line
          reading while True:. These tell the agent to take a
          random action if there are fewer than four states or to concatenate
          the states and pass it to the pretrained model if there are at least
          four:
        

        
          
            /AtariBot/bot_6_dqn.py
          
                  . . .
        while True:
            if len(states) < 4:
                action = env.action_space.sample()
            else:
                frames = np.concatenate(states[-4:], axis=3)
                action = np.argmax(model([frames]))
                . . .

        
        
          Then take an action and update the relevant data. Add a downsampled
          version of the observed state, and update the reward for this episode:
        

        
          
            /AtariBot/bot_6_dqn.py
          
                  . . .
        while True:
            ...
                action = np.argmax(model([frames]))
            state, reward, done, _ = env.step(action)
            states.append(downsample(state))
            episode_reward += reward
            . . .

        
        
          Next, add the following lines which check whether the episode is
          done and, if it is, print the episode’s total reward and
          amend the list of all results and break the while loop
          early:
        

        
          
            /AtariBot/bot_6_dqn.py
          
                  . . .
        while True:
            ...
            episode_reward += reward
            if done:
                print('Reward: %d' % episode_reward)
                rewards.append(episode_reward)
                break
                . . .

        
        
          Outside of the while and for loops, print
          the average reward. Place this at the end of your
          main function:
        

        
          
            /AtariBot/bot_6_dqn.py
          
          def main():
...
break
print('Average reward: %.2f' % (sum(rewards) / len(rewards)))

        
        Check that your file matches the following:

        
          
            /AtariBot/bot_6_dqn.py
          
          """
Bot 6 - Fully featured deep q-learning network.
"""

import cv2
import gym
import numpy as np
import random
import tensorflow as tf
from bot_6_a3c import a3c_model

random.seed(0)  # make results reproducible
tf.set_random_seed(0)

num_episodes = 10


def downsample(state):
    return cv2.resize(state, (84, 84), interpolation=cv2.INTER_LINEAR)[None]


def main():
    env = gym.make('SpaceInvaders-v0')  # create the game
    env.seed(0)  # make results reproducible
    rewards = []

    model = a3c_model(load='models/SpaceInvaders-v0.tfmodel')
    for _ in range(num_episodes):
        episode_reward = 0
        states = [downsample(env.reset())]
        while True:
            if len(states) < 4:
                action = env.action_space.sample()
            else:
                frames = np.concatenate(states[-4:], axis=3)
                action = np.argmax(model([frames]))
            state, reward, done, _ = env.step(action)
            states.append(downsample(state))
            episode_reward += reward
            if done:
                print('Reward: %d' % episode_reward)
                rewards.append(episode_reward)
                break
    print('Average reward: %.2f' % (sum(rewards) / len(rewards)))


if __name__ == '__main__':
    main()

        
        Save the file and exit your editor. Then, run the script:

        
          python bot_6_dqn.py

        
        Your output will end with the following:

        
          
            Output
          
          . . .
Reward: 1230
Reward: 4510
Reward: 1860
Reward: 2555
Reward: 515
Reward: 1830
Reward: 4100
Reward: 4350
Reward: 1705
Reward: 4905
Average reward: 2756.00

        
        
          Compare this to the result from the first script, where you ran a
          random agent for Space Invaders. The average reward in that case was
          only about 150, meaning this result is over twenty times better.
          However, you only ran your code for three episodes, as it’s fairly
          slow, and the average of three episodes is not a reliable metric.
          Running this over 10 episodes, the average is 2756; over 100 episodes,
          the average is around 2500. Only with these averages can you
          comfortably conclude that your agent is indeed performing an order of
          magnitude better, and that you now have an agent that plays Space
          Invaders reasonably well.
        

        
          However, recall the issue that was raised in the previous section
          regarding sample complexity. As it turns out, this Space Invaders
          agent takes millions of samples to train. In fact, this agent required
          24 hours on four Titan X GPUs to train up to this current level; in
          other words, it took a significant amount of compute to train it
          adequately. Can you train a similarly high-performing agent with far
          fewer samples? The previous steps should arm you with enough knowledge
          to begin exploring this question. Using far simpler models and per
          bias-variance tradeoffs, it may be possible.
        

      
      
        Conclusion

        
          In this tutorial, you built several bots for games and explored a
          fundamental concept in machine learning called bias-variance. A
          natural next question is: Can you build bots for more complex games,
          such as StarCraft 2? As it turns out, this is a pending research
          question, supplemented with open-source tools from collaborators
          across Google, DeepMind, and Blizzard. If these are problems that
          interest you, see
          open calls for research at OpenAI, for current problems.
        

        
          The main takeaway from this tutorial is the bias-variance tradeoff. It
          is up to the machine learning practitioner to consider the effects of
          model complexity. Whereas it is possible to leverage highly complex
          models and layer on excessive amounts of compute, samples, and time,
          reduced model complexity could significantly reduce the resources
          required.
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In [1]: import sklearn
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In [7]: from sklearn.metrics import accuracy_score

# Evaluate accuracy
print (accuracy_score (test_labels, preds))

0.941489361702
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In [3]:

# Look at our data
print (label_names)

print (labels(0])
print (feature_names[0])

print (features(0])

{'malignant’ 'benign']
o

mean radius
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# Train our classifier

model = gnb.fit(train, train_labels)

# Make predictions

n (6]

gnb.predict (test)

print (preds)

preds

[(1001100011101010111011011111101111110

1011011111111001111100110011100110010
1111110110000011111111001001001110110
1100011100110100110001110110010110100

1111111001111111111110011011011111100

011)






